

Towards p -adic periods in Chabauty-Kim theory

Ishai Dan-Cohen

December 9, 2024

Work in progress.

Joint with D. Corwin.

- ▶ We'll focus on the case of the complement of the zero section inside an elliptic scheme without CM over an open subscheme of $\text{Spec } \mathbb{Z}$:

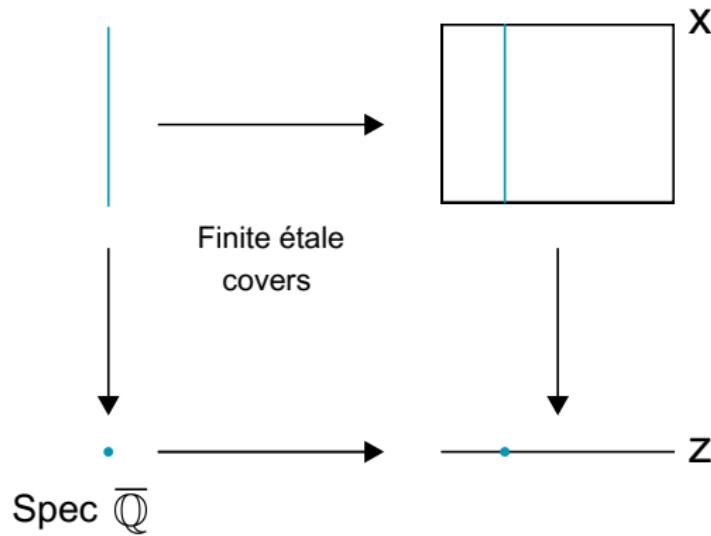
$$X \subset E \rightarrow Z \subset \text{Spec } \mathbb{Z}.$$

- ▶ Grothendieck's theory of the étale fundamental group suggests one way to think about the sections of

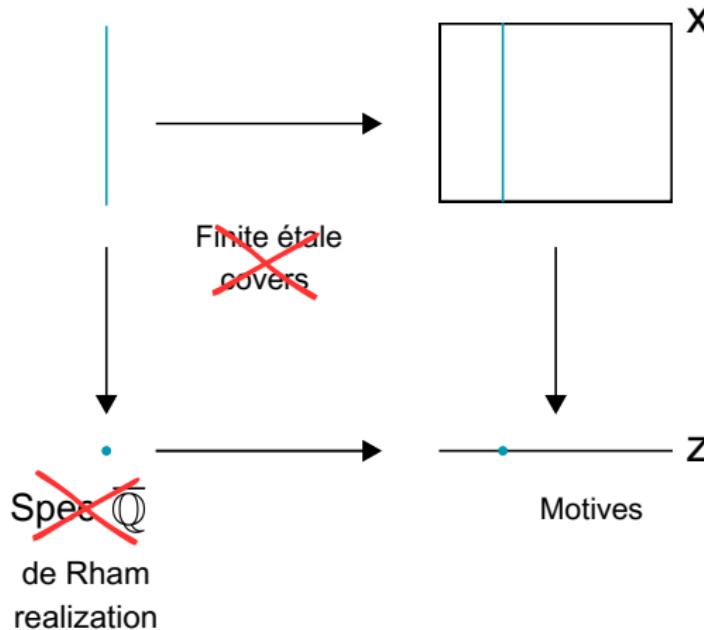
$$X \rightarrow Z$$

(“integral points”).

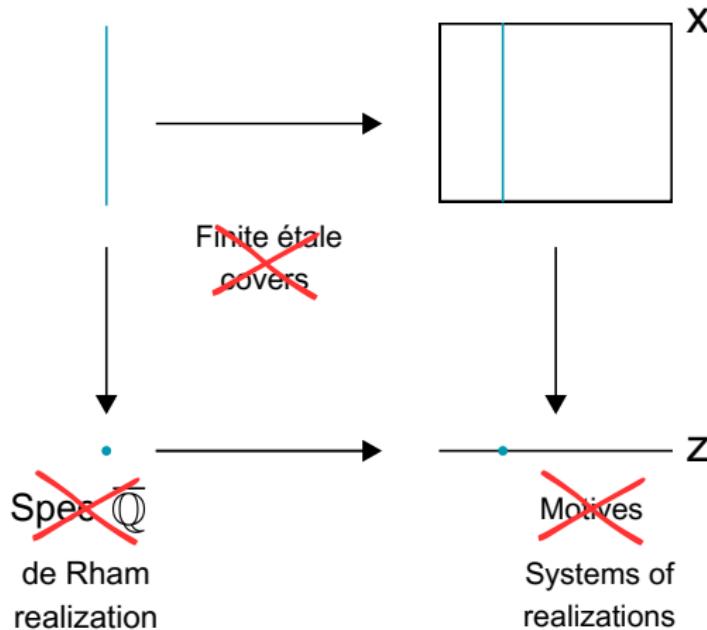
- ▶ Kim's approach to the study of integral points suggests a different way.



Vector bundles with
integrable connection on $X_{\mathbb{Q}}$



Vector bundles with
integrable connection on $X_{\mathbb{Q}}$



Systems of realizations

- ▶ There are many realizations of $H_1(E)$: a mixed Hodge structure, Galois representations, a filtered ϕ module; these are related by various comparison isomorphisms.
- ▶ Better:

$$H_1(E) \in \text{MMSys}(Z)$$

belongs to the Tannakian category of *mixed motivic systems of realizations over Z with \mathbb{Q} coefficients*.

Mixed elliptic systems and the unipotent fundamental group

- ▶ Let

$$\mathrm{M}_{\mathrm{E}}\mathrm{Sys}(Z) \subset \mathrm{MMSys}(Z)$$

be the Tannakian subcategory generated by $H_1(E)$, closed under extensions.

- ▶ We fix a point b for use as base-point.
- ▶ The *unipotent fundamental group* $\tilde{U}(X, b)$ is a prounipotent group object in $\mathrm{M}_{\mathrm{E}}\mathrm{Sys}(Z)$. We'll actually work with a unipotent quotient $U(X, b)$.

Properties

- ▶ The Betti realization $\tilde{U}(X, b)_B$ is the prounipotent completion of the topological fundamental group.
- ▶ The de Rham realization $\tilde{U}(X, b)_{\text{dR}}$ is the Tannakian fundamental group of the category of unipotent vector bundles with integrable connection on $X_{\mathbb{Q}}$.
- ▶ Fix a prime $p \in \mathbb{Z}$. The *filtered ϕ realization* $U(X, b)_{F\phi}$ is the de Rham realization over \mathbb{Q}_p equipped with some naturally occurring extra structures: a “Hodge” filtration and a “Frobenius” automorphism.
- ▶ A point $x \in X(\mathbb{Z})$ gives rise to a torsor object $U(X, b, x)$.

Special geometric paths

- ▶ The p -adic de Rham realization of the path torsor $U(X, b, x)_{F\phi}$ is defined more generally for $x \in X(\mathbb{Z}_p)$. The subspace

$$F^0 U(X, b, x)_{F\phi} \subset U(X, b, x)_{F\phi}$$

forms a torsor under $F^0 U(X, b)_{F\phi}$

- ▶ (these are the “geometric Hodge paths”).
- ▶ There’s a unique Frob. fixed path $p^{cr} \in U(X, b, x)_{F\phi}$
- ▶ (the “geometric crystalline path”).
- ▶ The *unipotent p -adic Albanese map*

$$\alpha : X(\mathbb{Z}_p) \rightarrow F^0 \backslash U(X, b)_{F\phi}$$

is given by

$$\alpha(x) = (p^H)^{-1} \circ p^{cr}$$

for any geometric Hodge path $p^H \in F^0 U(X, x, b)_{F\phi}$.

Relationship to iterated integrals

- ▶ An element $\omega \in T^\bullet H^1(E)_{\text{dR}}$ of the tensor algebra may be used to define a function

$$f_\omega : U(X, b)_{\text{dR}} \rightarrow \mathbb{A}_{\mathbb{Q}}^1;$$

- ▶ if f_ω factors through $F^0 \backslash U(X, b)$, then the composition

$$X(\mathbb{Z}_p) \xrightarrow{\alpha} F^0 \backslash U(X, b)_{F_\phi} \xrightarrow{f_\omega} \mathbb{A}_{\mathbb{Q}_p}^1$$

is given by the p -adic iterated integral

$$x \mapsto \int_b^x \omega.$$

Structure of arithmetic Tannakian Galois group

- ▶ The Tannakian Galois group $G(\mathbf{M}_{\mathbf{E}\text{Sys}}, \text{dR}) = G(\text{dR}) = G(Z)$ sits in a noncanonically split short exact sequence

$$1 \rightarrow U(Z) \rightarrow G(Z) \rightarrow \mathbb{G} \rightarrow 1$$

with \mathbb{G} reductive and $U(Z)$ prounipotent,

- ▶ the “unipotent fundamental group of Z ”.
- ▶ The sequence becomes canonically split if we replace dR by $\text{dR} \circ \text{gr}^W$.
- ▶ Under our assumption that E does *not* have CM, $\mathbb{G} = GL_2$.
- ▶ We let

$$F^0 U(\text{dR}) \subset U(\text{dR})$$

be the subgroup of Tannakian loops which preserve Hodge filtrations.

Axiomatic setting for Theorems A, B, C

- ▶ The category $M_{\text{ESys}}(Z)$ is an example of a *weight filtered Tannakian category* T . (Objects are equipped with filtrations, morphisms are strict, pure objects are semisimple.)
- ▶ De Rham realization is in a natural way a *Hodge filtered fiber functor* $\omega^H : T \rightarrow \text{FilVect}(\mathbb{Q})$. In this axiomatic setting, let's denote the associated fiber functor (de Rham realization) by ω .
- ▶ Crystalline realization is in a natural way a *Frobenius equivariant fiber functor*

$$\omega^{cr} : T \rightarrow \phi \text{Vect}(\mathbb{Q}_p).$$

(The operator ϕ is required to act with eigenvalues of weight n on $\text{gr}_n^W M$.)

Theorem (A)

- ▶ *The space of \otimes -compatible natural transformations*

$$\begin{array}{ccc} & \omega^H \circ \text{gr}^W & \\ T & \Downarrow \mathfrak{p}^H & \text{FilVect}(\mathbb{Q}) \\ & \omega^H & \end{array}$$

which induce the identity on associated graded objects, forms a trivial torsor under $F^0 U(\omega)$.

- ▶ These are our “arithmetic Hodge paths”.

Theorem (B)

- ▶ There exists a unique \otimes -compatible natural transformation

$$\begin{array}{ccc} & \omega^{cr} \circ gr^W & \\ T & \Downarrow \mathfrak{p}^{cr} & \phi \text{Vect}(\mathbb{Q}_p) \\ & \omega^{cr} & \end{array}$$

which induces the identity on associated graded objects.

- ▶ This is our “arithmetic crystalline path”.

- ▶ We fix an arithmetic Hodge path \mathfrak{p}^H .
- ▶ :(
- ▶ We define the *unipotent p-adic period loop* by

$$\mathfrak{u} := \mathfrak{p}^{cr} \circ (\mathfrak{p}^H)^{-1}.$$

- ▶ Existence and uniqueness of geometric crystalline paths applies in our axiomatic setting to torsor objects under effective prounipotent group objects in T .

Theorem C

- ▶ Let π be an effective unipotent group object in T (concentrated in negative weights)
- ▶ and let P be a torsor object with Frobenius fixed point p^{cr} .
- ▶ Then

$$\mathfrak{u}^{-1}p^{cr} \in F^0 P_\omega.$$

- ▶ Said differently, our unipotent p -adic period loops interchange geometric crystalline paths and geometric Hodge paths.
- ▶ Thus, the choice of arithmetic Hodge path gives us consistent choices of geometric Hodge paths.
- ▶ Wherever we encounter a geometric crystalline path p^{cr} , we set

$$p^H := \mathfrak{u}^{-1} p^{cr}.$$

- ▶ Our main application takes place in an intermediate level of generality.
- ▶ For instance, X may be a suitable model of a hyperbolic curve with motivic Mumford-Tate group \mathbb{G} (fundamental group of the category of pure motivic systems generated by H_1).

- We obtain the following

Corollary

We have a commutative diagram like so:

$$\begin{array}{ccc}
 X(Z) & \longrightarrow & X(\mathbb{Z}_p) \\
 \downarrow \kappa & & \downarrow \alpha \\
 Z^1(U(Z, dR), U(X)_{dR})^{\mathbb{G}} & \xrightarrow{ev_{\mathfrak{u}}} & F^0 \backslash U(X)_{F\phi}.
 \end{array}$$

- Here

$$\kappa_x(\gamma) = (p^H)^{-1} \circ \gamma(p^H),$$

- and $ev_{\mathfrak{u}}$ denotes evaluation at \mathfrak{u} .

- We also have a factorization of the evaluation map

$$\begin{array}{ccc}
 Z^1(U(Z, dR), U(X)_{dR})^{\mathbb{G}} & \xrightarrow{ev_u} & F^0 \backslash U(X)_{F\phi} \\
 \downarrow & \nearrow ev_{u_{p\text{-}\acute{e}t}} & \\
 Z^1(U(\text{GalRep}), U(X)_{p\text{-}\acute{e}t})^{\mathbb{G}} & &
 \end{array}$$

associated to realization into a suitable category of p -adic Galois representations.

- $Z^1(U(\text{GalRep}), U(X)_{p\text{-}\acute{e}t})^{\mathbb{G}}$ is the same as Kim's Selmer variety, so in particular representable by a finite type affine \mathbb{Q}_p -scheme.
- $Z^1(U(Z, dR), U(X)_{dR})^{\mathbb{G}}$ is conjecturally representable by a finite type affine \mathbb{Q} -variety. (But if we want to really compute the image of ev_u then representability might not play a central role anyway.)

- ▶ We have

$$\text{Kim functions} = \alpha^\sharp \ker \text{ev}_{\mathfrak{u}_{p\text{-}\acute{e}t}}^\sharp$$

∪

$$\text{motivic Kim functions} = \alpha^\sharp \ker \text{ev}_{\mathfrak{u}}^\sharp.$$

- ▶ These are locally analytic functions on $X(\mathbb{Z}_p)$ which vanish on $X(Z)$.
- ▶ Our construction should make (motivic) Kim functions computationally more accessible from purely abelian input.
- ▶ Both variants have advantages and disadvantages.

We'll give two examples of concrete applications of our work.

Example

- ▶ Joint work with D. Corwin and M. Lüdtke. Let $Z = \text{Spec } \mathbb{Z}[1/2]$, $X = \mathbb{P}^1 \setminus \{0, 1, \infty\}$.
- ▶ Then $X(\mathbb{Z}_p)$ admits the motivic Kim function

$$\begin{aligned} & \log(2)\zeta(3) \text{Li}_{2,1,1}(z) - \left(\zeta(3)\log(2) - \frac{8}{7} \text{Li}_4(2) \right) \text{Li}_1(z) \text{Li}_{2,1}(z) \\ & - \frac{1}{24} \left(\log(2)\zeta(3) - 4\frac{8}{7} \text{Li}_4(2) \right) \log(z) \text{Li}_1(z)^3 \\ & + \zeta(3) \left(\zeta(3)\log(2) - \frac{8}{7} \text{Li}_4(2) \right) \text{Li}_1(z). \end{aligned}$$

- ▶ This function occurs in weight 8, and hence beyond the so-called *quadratic quotient*.
- ▶ In a different direction, it goes beyond the so-called *polylogarithmic quotient*.

- ▶ The word in 1-forms

$$\omega = \frac{dt}{1-t} \cdot \frac{dt}{t} \cdot \frac{dt}{t}$$

may be used to define a function

$$f_\omega : U(X, 0, 1) \rightarrow \mathbb{A}_{\mathbb{Q}}^1$$

(tangential base points).

- ▶ Precomposing with the orbit map of a geometric Hodge path (unique in this case), we obtain a function

$$\zeta^f(3) : U(\text{MTM}, \text{dR}) \rightarrow \mathbb{A}^1$$

(a “formal period”)

- ▶ such that

$$\zeta^f(3)(\mathfrak{u}) = \zeta(3).$$

- ▶ This means that $\zeta(3)$ is a *p-adic period of a mixed Tate motive*.
- ▶ The Kim function above is a polynomial in Coleman functions that are in a certain sense rationally defined with period coefficients.

Example

- ▶ Work of D. Corwin, contributions by O. Patashnik and M. Lüdtke.
- ▶ Suppose in the example

$$X \subset E \rightarrow Z \subset \text{Spec } \mathbb{Z}$$

we have 1 inverted prime and E has p -Selmer rank 1.

- ▶ Let α, β be a basis of $H_{\text{dR}}^1(E_{\mathbb{Q}})$ with α holomorphic and β of type II.
- ▶ Then there exists a nonzero Kim function of the form

$$\begin{aligned} & c_1 \int_0^x (\alpha \beta \beta - 2\beta) + c_2 \int_0^x \alpha \beta \alpha + c_3 \int_0^x (2\alpha \alpha \beta + \alpha \beta \alpha) \\ & + c_4 \int_0^x \alpha \alpha \alpha + c_5 \int_0^x \alpha. \end{aligned}$$

Proof.

- ▶ We have

$$U(Z, dR)^{ab} = \prod_{i,j} \mathrm{Ext}^1(\mathbb{Q}(0), \mathrm{Sym}^i H_1(E)(j))^\vee \otimes \mathrm{Sym}^i H_1^{dR}(E)(j).$$

- ▶ There's a motivic quotient $U(X)$ of the unipotent fundamental group such that

$$\mathrm{Lie} U(X) = H_1(E) \oplus \mathbb{Q}(1) \oplus H_1(E)(1) =: W.$$

- ▶ In the category $M_E GRep(Z)$ of mixed elliptic p -adic Galois representations which are unramified over $Z \setminus \{p\}$ and crystalline at p , we have

$$\begin{aligned} \dim \mathrm{Ext}^1(\mathbb{Q}_p(0), H_1(E)) &= \dim \mathrm{Ext}^1(\mathbb{Q}_p(0), \mathbb{Q}_p(1)) \\ &= \dim \mathrm{Ext}^1(\mathbb{Q}_p(0), H_1(E)(1)) = 1. \end{aligned}$$

- ▶ These calculations allow us to replace the unipotent Tannakian Galois group by the free prounipotent group with $\mathrm{GL}_{2, \mathbb{Q}_p}$ -action $U(W_{p, \text{ét}})$.

$$\begin{array}{ccc}
X(Z) & \longrightarrow & X(\mathbb{Z}_p) \\
\kappa \downarrow & & \downarrow \alpha \\
Z^1(U(Z), U(X)_{p\text{-ét}})^{\mathbb{G}} & \xrightarrow{ev_u} & F^0 \backslash U(X)_{F\phi} \\
\downarrow & & \downarrow \\
U(Z) \times Z^1(U(Z), U(X)_{p\text{-ét}})^{\mathbb{G}} & \xrightarrow{ev} & U(Z) \times F^0 \backslash U(X)_{F\phi}
\end{array}$$

Using the above, we eventually reduce to the following purely geometric problem.

- ▶ Let V be the standard representation of GL_2 over a field k .
- ▶ The representation

$$W = V \oplus \det \oplus V \otimes \det,$$

carries a natural structure of nilpotent Lie algebra.

- ▶ Let U^g be the associated unipotent group.
- ▶ Let

$$F^0 U^g \subset U^g$$

be a subgroup given by certain explicit equations (work of J. Beacom).

- ▶ Let U^a be free prounipotent on W .

- ▶ Finally, consider the universal evaluation map

$$\mathfrak{ev} : Z^1(U^a, U^g)^{\mathrm{GL}_2} \times U^a \rightarrow U^g \times U^a$$

$$\mathfrak{ev}(c, u) = (c(u), u).$$

- ▶ **Problem:** Find a finite free $\mathcal{O}(U^a)$ -submodule I of

$$\mathcal{O}(F^0 \setminus U^g) \otimes \mathcal{O}(U^a)$$

such that $\mathfrak{ev}^\sharp I$ is contained in a finite free $\mathcal{O}(U^a)$ -submodule of

$$\mathcal{O}(Z^1(U^a, U^g)^{\mathrm{GL}_2}) \otimes \mathcal{O}(U^a)$$

of strictly lower rank.

- ▶ This sort of problem is easily solved in minimal examples,
- ▶ e.g. in the setting of the present example.

Proof of Theorem B (existence and uniqueness of arithmetic crystalline paths).

- ▶ Let $G(\omega)$ act on $U(\omega)$ by conjugation.
- ▶ We find that $U(\omega)$ is concentrated in negative weights.
- ▶ By Besser's argument, the Lang map

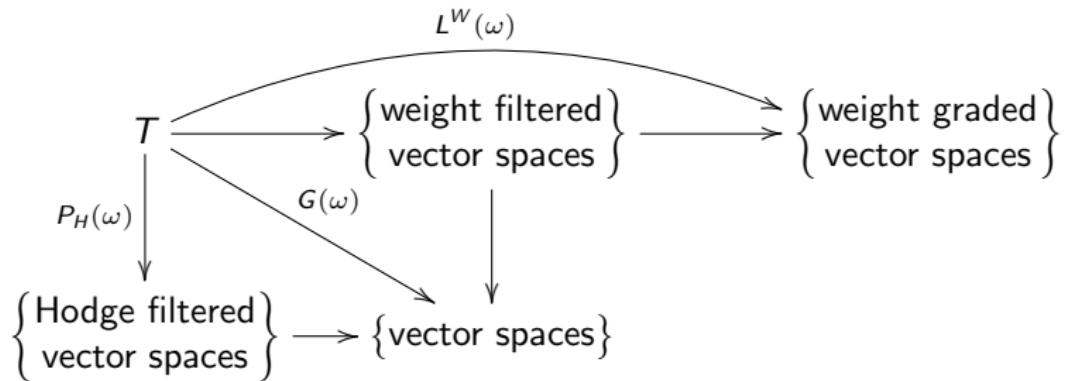
$$\begin{aligned} U(\omega) &\rightarrow U(\omega) \\ g &\mapsto g^{-1}\phi(g) \end{aligned}$$

is iso.

- ▶ This implies that every $G(\omega)$ -equivariant $U(\omega)$ -torsor possesses a unique ϕ -fixed point.
- ▶ We realize \mathfrak{p}^{cr} as the unique ϕ -fixed point in a certain $G(\omega)$ -equivariant $U(\omega)$ -torsor.

Proof of Theorem A (existence of arithmetic Hodge paths).

We consider the following groups of \otimes -automorphisms of symmetric monoidal functors:



Via Tannaka duality, the problem translates into the problem of lifting an associated central cocharacter:

$$\begin{array}{ccc} P_H(\omega) & & \\ \nearrow \cap & & \\ G(\omega) & \downarrow & \\ \mathbb{G}_m & \xrightarrow{\chi^w} & L^W(\omega) \end{array}$$

The kernel of the vertical map is unipotent. Work of P. Ziegler shows that in the finite type case, the groups on the right all have the same rank.

Unipotent p -adic periods

- ▶ Our unipotent p -adic period loops give us a well defined point

$$\mathfrak{u} : \text{Spec } \mathbb{Q}_p \rightarrow U(\text{dR})/F^0.$$

- ▶ Equivalently, a homomorphism defined on a certain subalgebra

$$\mathbb{Q}_p \xleftarrow{\text{per}} \mathcal{O}(U(\text{dR})/F^0) \subset \mathcal{O}(U(\text{dR})).$$

- ▶ We call elements in its image *unipotent p -adic periods*.

Example

- ▶ If α is a global nonvanishing 1-form on $E_{\mathbb{Q}}$ normalized with respect to a nonzero tangent vector v at the origin,
- ▶ and $x \in E(\mathbb{Q})$,
- ▶ then there's a function

$$f_{x,\alpha} : U(dR)/F^0 \rightarrow \mathbb{A}_{\mathbb{Q}}^1$$

- ▶ such that

$$f_{x,\alpha}(\mathfrak{u}) = \int_v^x \alpha.$$

Conjecture

- ▶ A natural extension of the p -adic period conjecture for mixed Tate motives says that the ring homomorphism

$$\text{per} : \mathcal{O}(U(\text{dR})/F^0) \rightarrow \mathbb{Q}_p$$

is injective.

- ▶ Compare recent work by Ancona–Frățilă.