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» We'll focus on the case of the complement of the zero section inside
an elliptic scheme without CM over an open subscheme of Spec Z:

X c E — Z c SpecZ.

» Grothendieck's theory of the étale fundamental group suggests one
way to think about the sections of

X -7

(“integral points”).

» Kim's approach to the study of integral points suggests a different
way.
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Systems of realizations

» There are many realizations of H;(E): a mixed Hodge structure,
Galois representations, a filtered ¢ module; these are related by
various comparison isomorphisms.

> Better:

Hi(E) € MMSys(Z)

belongs to the Tannakian category of mixed motivic systems of
realizations over Z with Q coefficients.



Mixed elliptic systems and the unipotent fundamental
group

> Let
MEgSys(Z) € MMSys(2)
be the Tannakian subcategory generated by H;(E), closed under
extensions.
» We fix a point b for use as base-point.

» The unipotent fundamental group C/(X, b) is a prounipotent group
object in MgSys(Z). We'll actually work with a unipotent quotient
U(X, b).



Properties

> The Betti realization (X, b)g is the prounipotent completion of the
topological fundamental group.

> The de Rham realization U(X, b)4r is the Tannakian fundamental
group of the category of unipotent vector bundles with integrable
connection on Xg.

» Fix a prime p € Z. The filtered ¢ realization U(X, b)g, is the de
Rham realization over Q, equipped with some naturally occurring
extra structures: a “Hodge” filtration and a “Frobenius”
automorphism.

» A point x € X(Z) gives rise to a torsor object U(X, b, x).



Special geometric paths

» The p-adic de Rham realization of the path torsor U(X, b, x)r, is
defined more generally for x € X(Z,). The subspace

FOU(X, b,x)rs = U(X, b,x)Fy

forms a torsor under FOU(X, b)ry
> (these are the “geometric Hodge paths™).
» There's a unique Frob. fixed path p € U(X, b, x)Fry
> (the “geometric crystalline path”).

» The unipotent p-adic Albanese map
o X(Z,) — FO\U(X, b)fy

is given by
H>_1o cr
p

a(x) = (p
for any geometric Hodge path p" € FOU(X, x, b)ry.



Relationship to iterated integrals

» An element w € T*H!(E)4r of the tensor algebra may be used to
define a function
f.: UX,b)ar — Ab;

> if f, factors through FO\U(X, b), then the composition
X(Zp) % FO\U(X, b)rg 1> AL,

is given by the p-adic iterated integral

X
XHJ w.
b



Structure of arithmetic Tannakian Galois group

» The Tannakian Galois group G(MgSys,dR) = G(dR) = G(Z) sits
in a noncanonically split short exact sequence

15 U(Z) > G(Z2) > G —>1

with G reductive and U(Z) prounipotent,
» the "unipotent fundamental group of Z".

» The sequence becomes canonically split if we replace dR by
dRogr”.
» Under our assumption that E does not have CM, G = GL,.
> We let
F°U(dR) < U(dR)

be the subgroup of Tannakian loops which preserve Hodge filtrations.



Axiomatic setting for Theorems A, B, C

» The category MgSys(Z) is an example of a weight filtered
Tannakian category T. (Objects are equipped with filtrations,
morphisms are strict, pure objects are semisimple.)

» De Rham realization is in a natural way a Hodge filtered fiber
functor w! : T — FilVect(Q). In this axiomatic setting, let's denote
the associated fiber functor (de Rham realization) by w.

» Crystalline realization is in a natural way a Frobenius equivariant
fiber functor
W T — ¢ Vect(Qp).

(The operator ¢ is required to act with eigenvalues of weight n on
gry’ M.)



Theorem (A)

» The space of ®-compatible natural transformations

wogr™

T o FilVect(Q)

~_ 7

UJH

which induce the identity on associated graded objects, forms a
trivial torsor under FOU(w).

> These are our “arithmetic Hodge paths”.



Theorem (B)

» There exists a unique ®-compatible natural transformation

wTogr

TN
T {pe ¢ Vect(Qp)
\/

W

which induces the identity on associated graded objects.

> This is our “arithmetic crystalline path”.



> We fix an arithmetic Hodge path p".
> :(

> We define the unipotent p-adic period loop by
w:=p“o(ph)"
» Existence and uniqueness of geometric crystalline paths applies in
our axiomatic setting to torsor objects under effective prounipotent
group objects in T.



Theorem C

» Let m be an effective unipotent group object in T (concentrated in
negative weights)
» and let P be a torsor object with Frobenius fixed point p.

> Then
ulp e FOP,.



» Said differently, our unipotent p-adic period loops interchange
geometric crystalline paths and geometric Hodge paths.

» Thus, the choice of arithmetic Hodge path gives us consistent
choices of geometric Hodge paths.

» Wherever we encounter a geometric crystalline path p, we set

PH = uflpcr.



» Our main application takes place in an intermediate level of
generality.

» For instance, X may be a suitable model of a hyperbolic curve with
motivic Mumford-Tate group G (fundamental group of the category
of pure motivic systems generated by Hj).



» We obtain the following

Corollary
We have a commutative diagram like so:

> Here
rx(y) = (p") T or(p

> and ev, denotes evaluation at .



» We also have a factorization of the evaluation map

ZYU(Z,dR), U(X)ar)® —2= FO\U(X)r4

l Vi, g

Z}(U(GalRep), U(X)per)

associated to realization into a suitable category of p-adic Galois
representations.

> Z'(U(GalRep), U(X)p_ét)G is the same as Kim's Selmer variety, so
in particular representable by a finite type affine Q,-scheme.

» ZYHU(Z,dR), U(X)4r)® is conjecturally representable by a finite
type affine Q-variety. (But if we want to really compute the image
of ev, then representability might not play a central role anyway.)



We have
Kim functions = af ker ev{

Upét
U

motivic Kim functions = o ker evﬁ.

These are locally analytic functions on X(Z,) which vanish on X(Z).

Our construction should make (motivic) Kim functions
computationally more accessible from purely abelian input.

Both variants have advantages and disadvantages.



We'll give two examples of concrete applications of our work.



Example

» Joint work with D. Corwin and M. Liidtke. Let Z = SpecZ[1/2],
X =P1\{0,1, 0}.

» Then X(Z,) admits the motivic Kim function
log(2)¢(3) Lin11(2) — <g(3) log(2) — g Li4(2)) Liy (2) Lin1(2)
- L <Iog(2)((3) - 4% Li4(2)> log(2) Lix (2)*
L¢3 (g(3> 0g(2) — 2 Li4(2)) Liy(2).
> This function occurs in weight 8, and hence beyond the so-called

quadratic quotient.

» In a different direction, it goes beyond the so-called polylogarithmic
quotient.



» The word in 1-forms

may be used to define a function
fo: U(X,0,1) > Af

(tangential base points).

» Precomposing with the orbit map of a geometric Hodge path
(unique in this case), we obtain a function

¢'(3) : UMTM,dR) — Al

(a “formal period")
» such that



» This means that {(3) is a p-adic period of a mixed Tate motive.

» The Kim function above is a polynomial in Coleman functions that
are in a certain sense rationally defined with period coefficients.



Example

» Work of D. Corwin, contributions by O. Patashnik and M. Liidtke.
» Suppose in the example

X cE— Zc SpecZ

we have 1 inverted prime and E has p-Selmer rank 1.
> Let a, 3 be a basis of Hi (Eg) with a holomorphic and 3 of type II.
» Then there exists a nonzero Kim function of the form

a Jo (BB —208) + CZJ afa + QL (2aaf + afa)

0

X X
+C4J oo+ q;f .
0 0



Proof.
» We have
U(Z,dR)*> = [T, Ext" (Q(0),Sym’ Hy(E)(j)) " ® Sym’ H{R(E)()).
» There's a motivic quotient U(X) of the unipotent fundamental
group such that

Lie U(X) = Hy(E) ® Q(1) ® Hy(E)(1) =: W.

» In the category MgGRep(Z) of mixed elliptic p-adic Galois
representations which are unramified over Z\{p} and crystalline at
p, we have

dim Ext* (Q,(0), Hi(E)) = dim Ext'(Q,(0), Q,(1))
= dim Ext' (Q,(0), Hi(E)(1)) = 1.
» These calculations allow us to replace the unipotent Tannakian

Galois group by the free prounipotent group with GL; g,-action
U(Wp.et).






Using the above, we eventually reduce to the following purely geometric
problem.

v

Let V be the standard representation of GL, over a field k.

» The representation
W=V @ det ® V ®det,

carries a natural structure of nilpotent Lie algebra.

v

Let U8 be the associated unipotent group.
> Let
FPUE < U®

be a subgroup given by certain explicit equations (work of J.
Beacom).

v

Let U? be free prounipotent on W.



Finally, consider the universal evaluation map
ev: ZH(U?, U8)C x U7 — UE x U?
eo(c,u) = (c(u), u).
Problem: Find a finite free O(U?)-submodule / of
O(F°\U#) ® O(U?)
such that ev?/ is contained in a finite free O(U?)-submodule of
O(ZH(U?, Us)*2) @ O(U?)

of strictly lower rank.
This sort of problem is easily solved in minimal examples,
e.g. in the setting of the present example.



Proof of Theorem B (existence and uniqueness of arithmetic crystalline
paths).

» Let G(w) act on U(w) by conjugation.
» We find that U(w) is concentrated in negative weights.

> By Besser's argument, the Lang map

U(w) = Uw)
g—g 'og)
is iso.
» This implies that every G(w)-equivariant U(w)-torsor possesses a
unique ¢-fixed point.

» We realize p* as the unique ¢-fixed point in a certain
G (w)-equivariant U(w)-torsor.



Proof of Theorem A (existence of arithmetic Hodge paths).
We consider the following groups of ®-automorphisms of symmetric
monoidal functors:

LY (w)

welght f||tered {Weight graded}

vector spaces vector spaces

P (w)

Hodge flltered

vector spaces — {vector spaces}



Via Tannaka duality, the problem translates into the problem of lifting an
associated central cocharacter:

The kernel of the vertical map is unipotent. Work of P. Ziegler shows that
in the finite type case, the groups on the right all have the same rank.



Unipotent p-adic periods

» Our unipotent p-adic period loops give us a well defined point
u: SpecQ, — U(dR)/F°.
» Equivalently, a homomorphism defined on a certain subalgebra
Q, <= O(U(dR)/F°) = O(U(dR)).

» We call elements in its image unipotent p-adic periods.



Example

*» If o is a global nonvanishing 1-form on Eg normalized with respect
to a nonzero tangent vector v at the origin,

» and x € E(Q),

> then there's a function

fea : U(R)/F® — Af

) = [ o

v

> such that



Conjecture

» A natural extension of the p-adic period conjecture for mixed Tate
motives says that the ring homomorphism

per: O(U(dR)/F°) — Q,
is injective.

» Compare recent work by Ancona—Fratila.



