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§ We’ll focus on the case of the complement of the zero section inside
an elliptic scheme without CM over an open subscheme of SpecZ:

X Ă E Ñ Z Ă SpecZ.

§ Grothendieck’s theory of the étale fundamental group suggests one
way to think about the sections of

X Ñ Z

(“integral points”).

§ Kim’s approach to the study of integral points suggests a different
way.
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Systems of realizations

§ There are many realizations of H1pE q: a mixed Hodge structure,
Galois representations, a filtered φ module; these are related by
various comparison isomorphisms.

§ Better:
H1pE q P MMSyspZ q

belongs to the Tannakian category of mixed motivic systems of
realizations over Z with Q coefficients.



Mixed elliptic systems and the unipotent fundamental
group

§ Let
MESyspZ q Ă MMSyspZ q

be the Tannakian subcategory generated by H1pE q, closed under
extensions.

§ We fix a point b for use as base-point.

§ The unipotent fundamental group ŨpX , bq is a prounipotent group
object in MESyspZ q. We’ll actually work with a unipotent quotient
UpX , bq.



Properties

§ The Betti realization ŨpX , bqB is the prounipotent completion of the
topological fundamental group.

§ The de Rham realization ŨpX , bqdR is the Tannakian fundamental
group of the category of unipotent vector bundles with integrable
connection on XQ.

§ Fix a prime p P Z . The filtered φ realization UpX , bqFφ is the de
Rham realization over Qp equipped with some naturally occurring
extra structures: a “Hodge” filtration and a “Frobenius”
automorphism.

§ A point x P X pZ q gives rise to a torsor object UpX , b, xq.



Special geometric paths

§ The p-adic de Rham realization of the path torsor UpX , b, xqFφ is
defined more generally for x P X pZpq. The subspace

F 0UpX , b, xqFφ Ă UpX , b, xqFφ

forms a torsor under F 0UpX , bqFφ
§ (these are the “geometric Hodge paths”).

§ There’s a unique Frob. fixed path pcr P UpX , b, xqFφ
§ (the “geometric crystalline path”).

§ The unipotent p-adic Albanese map

α : X pZpq Ñ F 0zUpX , bqFφ

is given by
αpxq “ ppHq´1 ˝ pcr

for any geometric Hodge path pH P F 0UpX , x , bqFφ.



Relationship to iterated integrals

§ An element ω P T ‚H1pE qdR of the tensor algebra may be used to
define a function

fω : UpX , bqdR Ñ A1
Q;

§ if fω factors through F 0zUpX , bq, then the composition

X pZpq
α
ÝÑ F 0zUpX , bqFφ

fω
ÝÑ A1

Qp

is given by the p-adic iterated integral

x ÞÑ

ż x

b

ω.



Structure of arithmetic Tannakian Galois group

§ The Tannakian Galois group G pMESys,dRq “ G pdRq “ G pZ q sits
in a noncanonically split short exact sequence

1 Ñ UpZ q Ñ G pZ q Ñ GÑ 1

with G reductive and UpZ q prounipotent,

§ the “unipotent fundamental group of Z”.

§ The sequence becomes canonically split if we replace dR by
dR ˝ grW .

§ Under our assumption that E does not have CM, G “ GL2.

§ We let
F 0UpdRq Ă UpdRq

be the subgroup of Tannakian loops which preserve Hodge filtrations.



Axiomatic setting for Theorems A, B, C

§ The category MESyspZ q is an example of a weight filtered
Tannakian category T . (Objects are equipped with filtrations,
morphisms are strict, pure objects are semisimple.)

§ De Rham realization is in a natural way a Hodge filtered fiber
functor ωH : T Ñ FilVectpQq. In this axiomatic setting, let’s denote
the associated fiber functor (de Rham realization) by ω.

§ Crystalline realization is in a natural way a Frobenius equivariant
fiber functor

ωcr : T Ñ φVectpQpq.

(The operator φ is required to act with eigenvalues of weight n on
grWn M.)



Theorem (A)

§ The space of b-compatible natural transformations

T

ωH
˝grW

##

ωH

;;�� p
H FilVectpQq

which induce the identity on associated graded objects, forms a
trivial torsor under F 0Upωq.

§ These are our “arithmetic Hodge paths”.



Theorem (B)

§ There exists a unique b-compatible natural transformation

T

ωcr
˝grW

$$

ωcr

::�� p
cr φVectpQpq

which induces the identity on associated graded objects.

§ This is our “arithmetic crystalline path”.



§ We fix an arithmetic Hodge path pH .

§ :(

§ We define the unipotent p-adic period loop by

u :“ pcr ˝ ppHq´1.

§ Existence and uniqueness of geometric crystalline paths applies in
our axiomatic setting to torsor objects under effective prounipotent
group objects in T .



Theorem C

§ Let π be an effective unipotent group object in T (concentrated in
negative weights)

§ and let P be a torsor object with Frobenius fixed point pcr .

§ Then
u´1pcr P F 0Pω.



§ Said differently, our unipotent p-adic period loops interchange
geometric crystalline paths and geometric Hodge paths.

§ Thus, the choice of arithmetic Hodge path gives us consistent
choices of geometric Hodge paths.

§ Wherever we encounter a geometric crystalline path pcr , we set

pH :“ u´1pcr .



§ Our main application takes place in an intermediate level of
generality.

§ For instance, X may be a suitable model of a hyperbolic curve with
motivic Mumford-Tate group G (fundamental group of the category
of pure motivic systems generated by H1).



§ We obtain the following

Corollary
We have a commutative diagram like so:

X pZ q //

κ

��

X pZpq

α

��
Z 1pUpZ ,dRq,UpX qdRq

G
evu
// F 0zUpX qFφ.

§ Here
κxpγq “ pp

Hq´1 ˝ γppHq,

§ and evu denotes evaluation at u.



§ We also have a factorization of the evaluation map

Z 1pUpZ ,dRq,UpX qdRq
G evu //

��

F 0zUpX qFφ

Z 1
`

UpGalRepq,UpX qp-ét

˘G

evup-ét

55

associated to realization into a suitable category of p-adic Galois
representations.

§ Z 1
`

UpGalRepq,UpX qp-ét

˘G
is the same as Kim’s Selmer variety, so

in particular representable by a finite type affine Qp-scheme.

§ Z 1pUpZ ,dRq,UpX qdRq
G is conjecturally representable by a finite

type affine Q-variety. (But if we want to really compute the image
of evu then representability might not play a central role anyway.)



§ We have

Kim functions “ α7 ker ev 7up-ét

motivic Kim functions “ α7 ker ev 7u.

Ť

§ These are locally analytic functions on X pZpq which vanish on X pZ q.

§ Our construction should make (motivic) Kim functions
computationally more accessible from purely abelian input.

§ Both variants have advantages and disadvantages.



We’ll give two examples of concrete applications of our work.



Example

§ Joint work with D. Corwin and M. Lüdtke. Let Z “ SpecZr1{2s,
X “ P1zt0, 1,8u.

§ Then X pZpq admits the motivic Kim function

logp2qζp3q Li2,1,1pzq ´

ˆ

ζp3q logp2q ´
8

7
Li4p2q

˙

Li1pzq Li2,1pzq

´ 1
24

ˆ

logp2qζp3q ´ 4
8

7
Li4p2q

˙

logpzq Li1pzq
3

` ζp3q

ˆ

ζp3q logp2q ´
8

7
Li4p2q

˙

Li1pzq.

§ This function occurs in weight 8, and hence beyond the so-called
quadratic quotient.

§ In a different direction, it goes beyond the so-called polylogarithmic
quotient.



§ The word in 1-forms

ω “
dt

1´ t
¨
dt

t
¨
dt

t

may be used to define a function

fω : UpX , 0, 1q Ñ A1
Q

(tangential base points).

§ Precomposing with the orbit map of a geometric Hodge path
(unique in this case), we obtain a function

ζfp3q : UpMTM,dRq Ñ A1

(a “formal period”)

§ such that
ζfp3qpuq “ ζp3q.



§ This means that ζp3q is a p-adic period of a mixed Tate motive.

§ The Kim function above is a polynomial in Coleman functions that
are in a certain sense rationally defined with period coefficients.



Example

§ Work of D. Corwin, contributions by O. Patashnik and M. Lüdtke.

§ Suppose in the example

X Ă E Ñ Z Ă SpecZ

we have 1 inverted prime and E has p-Selmer rank 1.

§ Let α, β be a basis of H1
dRpEQq with α holomorphic and β of type II.

§ Then there exists a nonzero Kim function of the form

c1

ż x

0

pαββ ´ 2βq ` c2

ż x

0

αβα` c3

ż x

0

p2ααβ ` αβαq

`c4

ż x

0

ααα` c5

ż x

0

α.



Proof.

§ We have
UpZ ,dRqab “

ś

i,j Ext1
`

Qp0q,Symi H1pE qpjq
˘_
b Symi HdR

1 pE qpjq.

§ There’s a motivic quotient UpX q of the unipotent fundamental
group such that

LieUpX q “ H1pE q ‘Qp1q ‘ H1pE qp1q “: W .

§ In the category MEGReppZ q of mixed elliptic p-adic Galois
representations which are unramified over Zztpu and crystalline at
p, we have

dim Ext1pQpp0q,H1pE qq “ dim Ext1pQpp0q,Qpp1qq

“ dim Ext1pQpp0q,H1pE qp1qq “ 1.

§ These calculations allow us to replace the unipotent Tannakian
Galois group by the free prounipotent group with GL2,Qp -action
UpWp-étq.



X pZ q //

κ

��

X pZpq

α

��
Z 1pUpZ q,UpX qp´étq

G
evu

//

��

F 0zUpX qFφ

��
UpZ q ˆ Z 1pUpZ q,UpX qp´étq

G
ev
// UpZ q ˆ F 0zUpX qFφ



Using the above, we eventually reduce to the following purely geometric
problem.

§ Let V be the standard representation of GL2 over a field k .

§ The representation

W “ V ‘ det ‘ V b det,

carries a natural structure of nilpotent Lie algebra.

§ Let Ug be the associated unipotent group.

§ Let
F 0Ug Ă Ug

be a subgroup given by certain explicit equations (work of J.
Beacom).

§ Let Ua be free prounipotent on W .



§ Finally, consider the universal evaluation map

ev : Z 1pUa,Ug qGL2 ˆ Ua Ñ Ug ˆ Ua

evpc , uq “ pcpuq, uq.

§ Problem: Find a finite free OpUaq-submodule I of

OpF 0zUg q bOpUaq

such that ev7I is contained in a finite free OpUaq-submodule of

OpZ 1pUa,Ug qGL2q bOpUaq

of strictly lower rank.

§ This sort of problem is easily solved in minimal examples,

§ e.g. in the setting of the present example.



Proof of Theorem B (existence and uniqueness of arithmetic crystalline
paths).

§ Let G pωq act on Upωq by conjugation.

§ We find that Upωq is concentrated in negative weights.

§ By Besser’s argument, the Lang map

Upωq Ñ Upωq

g ÞÑ g´1φpgq

is iso.

§ This implies that every G pωq-equivariant Upωq-torsor possesses a
unique φ-fixed point.

§ We realize pcr as the unique φ-fixed point in a certain
G pωq-equivariant Upωq-torsor.



Proof of Theorem A (existence of arithmetic Hodge paths).
We consider the following groups of b-automorphisms of symmetric
monoidal functors:

T //

PHpωq

��

Gpωq

&&

LW
pωq

))"

weight filtered
vector spaces

*

��

//
"

weight graded
vector spaces

*

"

Hodge filtered
vector spaces

*

//
 

vector spaces
(



Via Tannaka duality, the problem translates into the problem of lifting an
associated central cocharacter:

PHpωq

Ş

G pωq

����
Gm

χW

//

EE

LW pωq

The kernel of the vertical map is unipotent. Work of P. Ziegler shows that
in the finite type case, the groups on the right all have the same rank.



Unipotent p-adic periods

§ Our unipotent p-adic period loops give us a well defined point

u : SpecQp Ñ UpdRq{F 0.

§ Equivalently, a homomorphism defined on a certain subalgebra

Qp
per
ÐÝÝ O

`

UpdRq{F 0
˘

Ă O
`

UpdRq
˘

.

§ We call elements in its image unipotent p-adic periods.



Example

§ If α is a global nonvanishing 1-form on EQ normalized with respect
to a nonzero tangent vector v at the origin,

§ and x P E pQq,
§ then there’s a function

fx,α : UpdRq{F 0 Ñ A1
Q

§ such that

fx,αpuq “

ż x

v

α.



Conjecture

§ A natural extension of the p-adic period conjecture for mixed Tate
motives says that the ring homomorphism

per : O
`

UpdRq{F 0
˘

Ñ Qp

is injective.

§ Compare recent work by Ancona–Frăţilă.


