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Grothendieck envisioned a two step approach to understanding the
rational points of a hyperbolic curve over a number field:

•
understand
π1-sections

•
prove equivalence of π1-sections

with rational points
•

Of course, we have Mordell = Faltings but we still have neither of the
above, including even the finiteness of the set of π1-sections.
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In fact, one could argue that today, the picture looks rather more like
this:

•

prove equivalence of π1-sections with rational points

•
understand the set
of rational points

understand the set of π1-sections

•

While we do have an aspect of the bottom arrow by Faltings, there’s
still much to be desired (effective versions, uniform bounds, higher
dimensions...).
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Our interpretation of Chabauty-Kim theory suggests a shorter path via
“locally geometric motivic augmentations”:

•

prove equivalence of l.g.m.a’s with rational points

•
understand

rational points

understand l.g.m.a’s

•

To give a sense of what we can show before explaining what these are, we
have, for instance, the following.
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Theorem (Motivic Manin-Demjanenko)

Fix a number field Z = Spec K and a smooth projective hyperbolic
curve X over K .

Suppose there exists an abelian variety A such that

rank Hom(X ,A) > 2 rank A(K).

Then for any morphism X → J to an abelian variety, the image of

Auglg(X)→ Aug(J)

is finite.
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There’s a functor

C : Sm
op
Z → CAlg DM(Z ,Q)

to the category of highly structured commutative algebras in a certain
presentably symmetric monoidal stable Q-linear ∞-category.

C(Y) is the “motivic cochain algebra” of Y .

For objects E,F in an ∞-category D, Hom(E,F) may reasonably be
identified with a topological space.

There are essentially well defined continuous composition maps.

The homotopy category hoD is given by

HomhoD(E,F) := π0 Hom(E,F).
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Given a diagram
A

f
��

B g
// C

(∗)

of topological spaces,

the homotopy pullback

D = lim(∗)

consists of a natural topology on the set

D =
{
(a, b , γ)

∣∣∣ a ∈ A , b ∈ B , γ a path f(a)
∼
−→ g(b) in C

}
.
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Limits and colimits in∞-categories are determined by homotopy limits
and colimits of topological spaces. For instance, colimits are
determined by homotopy equivalences

Hom(colimi Ei ,F) = lim
i

Hom(Ei ,F).

A stable ∞-category D (like DM(Z ,Q)) possesses an object 0 which
is both initial and terminal.

A square diagram is a pullback diagram iff it’s a pushout diagram.
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Given E ∈ D, the suspension ΣE is given by the pushout

E //

��

0

��
0 // ΣE.

Pairs of Cartesian squares of the form

E //

��

F //

��

0

��
0 // G // ΣE

give hoD the structure of a triangulated category.
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Two main features of the category of motives DM(Z ,Q):

I RHom’s are governed by K-theory.
I There are realization functors to the various Weil cohomology theories

on the level of derived categories.

These upgrade naturally to
categories of highly structured commutative algebras in derived
categories.

For instance, there’s a “de Rham realization functor”

RedR : CAlg DM(Z ,Q)→ CAlgD(C) ' cdgaC
RedRC(Y) ' Ω•C∞(YC)

' Ω•alg(YC) if Y is affine.
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Let Aug(Y) := π0 Hom(C(Y),1).

A Z-point y ∈ Y(Z) gives rise to an augmentation

(C(Y)→ C(Z) ' 1) ∈ Aug(Y).

The augmented algebra C(Y)→ 1 remembers the prounipotent
completion of π1 with its many extra structures.

So there are good reasons to be interested in these mysterious
augmentations, and the question should be

What, if anything, can we say about them?

Answer:

I We can say a lot about abelian varieties
I and about Gm-torsors:
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Theorem (Immediate from Ancona et. al. and Iwanari)
If A is an Abelian variety, then Aug(A) = A(K) ⊗ Q.

Theorem
If M∗ → A is a Gm-torsor, then Aug(M∗) is a K ∗ ⊗ Q-torsor over A(K) ⊗ Q.

This allows us to extend the theory of Néron-Tate heights on abelian
varieties to motivic augmentations.
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There’s a homomorphism

Pic(A)→ {functions Aug(A)→ R}

M 7→ ĥM .

Some properties:

I If M is ample and symmetric, then ĥM is a positive definite quadratic
form.

I If in addition M0 ∈ Pic0(A), then there’s a constant C > 0 such that

|ĥM0 (α)| ≤ C ·
√

ĥM(α).
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Depending on the choice of a vector 0̃ in the fiber of M above 0, there
are local “Néron-Tate height functions”

λM,v : Aug(M∗Kv
)→ R

(at all places v of K )

such that if
Aug(M∗)→ Aug(A)

maps
α̃→ α

then
ĥM(α) =

∑
v

λM,v(α̃).
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If v is any place of K , then there’s a commuting square

X(K) //

��

X(Kv)

��
Aug(X) // Aug(XKv ).

Definition
An augmentation α ∈ Aug(X) is locally geometric if for each place v, the
image of α in Aug(XKv ) lies in the image of X(Kv).

We denote the set of such by Auglg(X).
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Pulling back along maps from curves to abelian varieties, we obtain a
theory of Weil heights on locally geometric augmentations:

Theorem (Motivic Weil height machine)
There’s a homomorphism

Pic(X)→
{functions Auglg(X)→ R}

{bounded}
L 7→ hL

such that if f : X → A is a morphism to an abelian variety and M ∈ Pic A ,
then

hf∗M = f∗ĥM .

We may equally work with augmentations defined over an algebraic closure.
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Let me now sketch how to get from here to MMD.

We fix an ample line
bundle L on X . Suppose

f1, . . . , fr : X → A

are Z-linearly independent modulo constant functions. Then the MWHM
may be used to show that for α ∈ Auglg(X) with hL (α) sufficiently large,
the points

f1(α), . . . , fr(α) ∈ Aug(A) = A(K) ⊗ Q

are Q-linearly independent. This means that under the conditions of the
theorem, rational points have bounded height. Our version of Nothcott’s
theorem says that such a set has finite image in Aug(J) for any abelian
variety J.

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 22 / 38



Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X .

Suppose

f1, . . . , fr : X → A

are Z-linearly independent modulo constant functions. Then the MWHM
may be used to show that for α ∈ Auglg(X) with hL (α) sufficiently large,
the points

f1(α), . . . , fr(α) ∈ Aug(A) = A(K) ⊗ Q

are Q-linearly independent. This means that under the conditions of the
theorem, rational points have bounded height. Our version of Nothcott’s
theorem says that such a set has finite image in Aug(J) for any abelian
variety J.

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 22 / 38



Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X . Suppose

f1, . . . , fr : X → A

are Z-linearly independent modulo constant functions.

Then the MWHM
may be used to show that for α ∈ Auglg(X) with hL (α) sufficiently large,
the points

f1(α), . . . , fr(α) ∈ Aug(A) = A(K) ⊗ Q

are Q-linearly independent. This means that under the conditions of the
theorem, rational points have bounded height. Our version of Nothcott’s
theorem says that such a set has finite image in Aug(J) for any abelian
variety J.

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 22 / 38



Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X . Suppose

f1, . . . , fr : X → A

are Z-linearly independent modulo constant functions. Then the MWHM
may be used to show that for α ∈ Auglg(X) with hL (α) sufficiently large,
the points

f1(α), . . . , fr(α) ∈ Aug(A) = A(K) ⊗ Q

are Q-linearly independent.

This means that under the conditions of the
theorem, rational points have bounded height. Our version of Nothcott’s
theorem says that such a set has finite image in Aug(J) for any abelian
variety J.

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 22 / 38



Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X . Suppose

f1, . . . , fr : X → A

are Z-linearly independent modulo constant functions. Then the MWHM
may be used to show that for α ∈ Auglg(X) with hL (α) sufficiently large,
the points

f1(α), . . . , fr(α) ∈ Aug(A) = A(K) ⊗ Q

are Q-linearly independent. This means that under the conditions of the
theorem, rational points have bounded height.

Our version of Nothcott’s
theorem says that such a set has finite image in Aug(J) for any abelian
variety J.

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 22 / 38



Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X . Suppose

f1, . . . , fr : X → A

are Z-linearly independent modulo constant functions. Then the MWHM
may be used to show that for α ∈ Auglg(X) with hL (α) sufficiently large,
the points

f1(α), . . . , fr(α) ∈ Aug(A) = A(K) ⊗ Q

are Q-linearly independent. This means that under the conditions of the
theorem, rational points have bounded height. Our version of Nothcott’s
theorem says that such a set has finite image in Aug(J) for any abelian
variety J.

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 22 / 38



Table of Contents

1 Introduction

2 Motivic augmentations

3 Motivic Néron-Tate and Weil heights

4 The motivic cochain algebra of an abelian variety

5 The motivic cochain algebra of a Gm-torsor: statement

6 The motivic cochain algebra of a Gm-torsor: proof

7 Appendix: Why locally geometric?

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 23 / 38



The de Rham dga of an abelian variety AC over C is equivalent to the cdga
with zero differential

C∗dR(AC) ' Sym H1
dR(AC).

A similar statement holds motivically:
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Let D = DM(Z ,Q) (Z = Spec K ) and let

Aug(Y) = HomCAlgD(C(Y),1).

Ancona et. al. construct M1(A) ∈ DM(Z ,Q) by considering the sheaf
of Q-vector spaces A ⊗ Q.

Let M1 = M∨1 .

Iwanari shows that
C(A) = Sym M1(A).

Thus,

Aug(A) = HomD
(
M1(A),Q(0)

)
= HomD(Q(0),M1(A)) = A(K) ⊗ Q.
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If YC is smooth over C and LC → YC is a line bundle with first Chern class
cdR ∈ H2

dR(YC) and associated Gm-torsor L∗,

then

Ω•C∞(L∗) ' Ω•C∞(Y)[t ]/(dt − cdR).

More precisely, if

C[−2]
cdR
−−→ C∗dR(YC)→ E

is the cofiber of cdR then the induced square

Sym CdR(YC) //

��

Sym E

��
CdR(YC) // CdR(L∗

C
)

is a homotopy pushout square.
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Now let Y be smooth over K and L a line bundle over Y .

Let

cL : M1(Gm)[−1] = Q(−1)[−2]→ C(Y)

be the motivic first Chern class, and let

Q(−1)[−2]→ C(Y)→ E → Q(−1)[−1] = M1(Gm)

be the cofiber in D.

Theorem (The motivic cochain algebra of a Gm-bundle)
The square

Sym C(Y) //

��

Sym E

��
C(Y) // C(L∗)

is (homotopy) coCartesian.
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Hence, the augmentation space sits in a homotopy pullback square

HomD
(
C(Y),Q(0)

)
HomD

(
E,Q(0)

)
oo Aug(Gm) = K ∗ ⊗ Qoo

Aug(Y)

OO

Aug(L∗)oo

OO

It follows that Aug(L∗) has the structure of a K ∗ ⊗ Q-torsor over
Aug(Y).
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Let P be the pushout

Sym C(Y) //

��

Sym E

��
C(Y) // P.

Then by base-changing everything to C(Y) we find that P is also a
pushout

SymC(Y) C(Y) //

��

SymC(Y) C(L∗)

��
C(Y) // P.
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SymC(Y) C(Y) //

��

SymC(Y) C(L∗)

��
C(Y) // P.

The copy of C(L∗) in the upper right comes from the Gysin sequence

C(Y)(−1)[−2]
mult. by cL

−−−−−−−−→ C(Y)→ C(L∗)→ C(Y)(−1)[−1]. (*)

This shows that P may be identified with the “relatively free commutative
algebra” generated by the pointed object

C(Y)→ C(L∗)

of ModC(Y).
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Lurie’s theory of free algebras shows that

P = colim C(L∗)cL⊗

is given by the colimit of a diagram

C(L∗)cL⊗ : Fininj → ModC(Y)

which mixes the symmetric group actions on the tensor powers of C(L∗)
with multiplication by the 1st Chern class cL .

Using the fact that ModC(Y)

is tensored over rational spaces, we may decompose the colimit as

P = colimn Symn
C(Y) C(L∗).
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Taking symmetric powers over C(Y) in the exact triangle

C(Y)(−1)[−2]
mult. by cL

−−−−−−−−→ C(Y)→ C(L∗)→ C(Y)(−1)[−1], (*)

we get exact triangles

Symn−1
C(Y) C(L∗)→ Symn

C(Y) C(L∗)→ Symn
C(Y) C(Y)(−1)[−1].

We have
Symn

C(Y) C(Y)(−1)[−1] = 0 for n ≥ 2.

So finally,

P = colim(C(Y)→ C(L∗)
=
−→ C(L∗)

=
−→ C(L∗)

=
−→ · · · ) = C(L∗).
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I’ll indicate why our heights of locally geometric augmentations on curves
are well defined up to bounded functions.

The main point is to show that if

f : X → A

trivializes a line bundle L on A , then

Auglg(X)→ Aug(A)
hL
−−→ R

is bounded.
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Since f∗L ' OX , f lifts to a map

f̃ : X → L∗.

We spread out f̃ to a map
f̃ : X → L∗

over an open subscheme Z ⊂ SpecOK where everything has good
reduction. Now since X is projective, X(Kv) is in a suitable sense bounded
for every v, hence so is its image

f̃
(
X(Kv)

)
⊂ L∗(Kv).

Moreover, the local Néron-Tate height

λL ,v : L∗(Kv)→ R

is bounded on bounded subsets.
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Further, at v ∈ Z a place of good reduction, λL ,v vanishes on the Ov -lattice

L∗(Ov) ⊂ L∗(Kv).

We find that for α ranging over Auglg(X), the sum

hL

(
f(α)

)
=

∑
v

λL ,v

(̃
f(α)

)
is a finite sum of bounded functions.
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