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@ Grothendieck envisioned a two step approach to understanding the
rational points of a hyperbolic curve over a number field:

understand prove equivalence of my-sections
° °

m1-sections with rational points
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@ Grothendieck envisioned a two step approach to understanding the
rational points of a hyperbolic curve over a number field:

understand prove equivalence of m1-sections
[ ] °
m1-sections with rational points

@ Of course, we have Mordell = Faltings but we still have neither of the
above, including even the finiteness of the set of 71-sections.
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@ In fact, one could argue that today, the picture looks rather more like
this:

understand the set of 71-sections prove equivalence of r{-sections with rational points

understand the set
of rational points
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@ In fact, one could argue that today, the picture looks rather more like
this:

understand the set of 71-sections prove equivalence of rr1-sections with rational points

understand the set o
of rational points

@ While we do have an aspect of the bottom arrow by Faltings, there’s
still much to be desired (effective versions, uniform bounds, higher
dimensions...).
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Our interpretation of Chabauty-Kim theory suggests a shorter path via
“locally geometric motivic augmentations”:
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Our interpretation of Chabauty-Kim theory suggests a shorter path via
“locally geometric motivic augmentations”:

understand l.g.m.a’s prove equivalence of l.g.m.a’s with rational points

understand
rational points
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Our interpretation of Chabauty-Kim theory suggests a shorter path via
“locally geometric motivic augmentations”:

understand l.g.m.a’s prove equivalence of l.g.m.a’s with rational points

understand
rational points

To give a sense of what we can show before explaining what these are, we
have, for instance, the following.
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Theorem (Motivic Manin-Demjanenko)

@ Fix a number field Z = Spec K and a smooth projective hyperbolic
curve X over K.
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Theorem (Motivic Manin-Demjanenko)

@ Fix a number field Z = Spec K and a smooth projective hyperbolic
curve X over K.

@ Suppose there exists an abelian variety A such that

rank Hom(X, A) > 2rank A(K).
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Theorem (Motivic Manin-Demjanenko)

@ Fix a number field Z = Spec K and a smooth projective hyperbolic
curve X over K.

@ Suppose there exists an abelian variety A such that
rank Hom(X, A) > 2rank A(K).
@ Then for any morphism X — J to an abelian variety, the image of

Aug'#(X) — Aug(J)

is finite.
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@ There’s a functor
C: Sm"zp — CAlgDM(Z,Q)

to the category of highly structured commutative algebras in a certain
presentably symmetric monoidal stable Q-linear co-category.
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@ There’s a functor
C: Sm"zp — CAlgDM(Z,Q)

to the category of highly structured commutative algebras in a certain
presentably symmetric monoidal stable Q-linear co-category.

@ C(Y) is the “motivic cochain algebra” of Y.
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@ There’s a functor
C: Sm"zp — CAlgDM(Z,Q)

to the category of highly structured commutative algebras in a certain
presentably symmetric monoidal stable Q-linear co-category.

@ C(Y) is the “motivic cochain algebra” of Y.

@ For objects E, F in an co-category D, Hom(E, F) may reasonably be
identified with a topological space.
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@ There’s a functor
C: Sm"zp — CAlgDM(Z,Q)

to the category of highly structured commutative algebras in a certain
presentably symmetric monoidal stable Q-linear co-category.

@ C(Y) is the “motivic cochain algebra” of Y.

@ For objects E, F in an co-category D, Hom(E, F) may reasonably be
identified with a topological space.

@ There are essentially well defined continuous composition maps.
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@ There’s a functor
C: Sm"zp — CAlgDM(Z,Q)

to the category of highly structured commutative algebras in a certain
presentably symmetric monoidal stable Q-linear co-category.

@ C(Y) is the “motivic cochain algebra” of Y.

@ For objects E, F in an co-category D, Hom(E, F) may reasonably be
identified with a topological space.

@ There are essentially well defined continuous composition maps.
@ The homotopy category hoD is given by

Hompop(E, F) := mo Hom(E, F).
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@ Given a diagram

O=——>

of topological spaces,
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@ Given a diagram

A
|
of topological spaces, the homotopy pullback
D = lim(x)
consists of a natural topology on the set

D ={(a.b.y)|acA.beB.yapath f(a) > g(b) in C}.
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@ Limits and colimits in co-categories are determined by homotopy limits
and colimits of topological spaces. For instance, colimits are
determined by homotopy equivalences

Hom(colim; Ej, F) = lim Hom(E;, F).
]
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@ Limits and colimits in co-categories are determined by homotopy limits
and colimits of topological spaces. For instance, colimits are
determined by homotopy equivalences

Hom(colim; Ej, F) = lim Hom(E;, F).
]

@ A stable co-category D (like DM(Z, Q)) possesses an object 0 which
is both initial and terminal.
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@ Limits and colimits in co-categories are determined by homotopy limits
and colimits of topological spaces. For instance, colimits are
determined by homotopy equivalences

Hom(colim; Ej, F) = lim Hom(E;, F).
]
@ A stable co-category D (like DM(Z, Q)) possesses an object 0 which

is both initial and terminal.
@ A square diagram is a pullback diagram iff it's a pushout diagram.
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@ Given E € D, the suspension L E is given by the pushout

|

]

——=>FE.
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@ Given E € D, the suspension LE is given by the pushout
E 0
0

——>FE.
@ Pairs of Cartesian squares of the form

R

E—>F——0

L

0—G——1XE

give hoD the structure of a triangulated category.
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@ Two main features of the category of motives DM(Z, Q):
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@ Two main features of the category of motives DM(Z, Q):
» RHom’s are governed by K-theory.
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@ Two main features of the category of motives DM(Z, Q):
» RHom’s are governed by K-theory.
» There are realization functors to the various Weil cohomology theories
on the level of derived categories.
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@ Two main features of the category of motives DM(Z, Q):

» RHom’s are governed by K-theory.

» There are realization functors to the various Weil cohomology theories
on the level of derived categories. These upgrade naturally to
categories of highly structured commutative algebras in derived
categories.
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@ Two main features of the category of motives DM(Z, Q):

» RHom’s are governed by K-theory.

» There are realization functors to the various Weil cohomology theories
on the level of derived categories. These upgrade naturally to
categories of highly structured commutative algebras in derived

categories.
@ For instance, there’s a “de Rham realization functor”
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@ Two main features of the category of motives DM(Z, Q):

» RHom’s are governed by K-theory.

» There are realization functors to the various Weil cohomology theories
on the level of derived categories. These upgrade naturally to
categories of highly structured commutative algebras in derived

categories.
@ For instance, there’s a “de Rham realization functor”

Regr : CAlg DM(Z, Q) — CAlg D(C) = cdgac
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@ Two main features of the category of motives DM(Z, Q):

» RHom’s are governed by K-theory.

» There are realization functors to the various Weil cohomology theories
on the level of derived categories. These upgrade naturally to
categories of highly structured commutative algebras in derived

categories.
@ For instance, there’s a “de Rham realization functor”

Rear : CAlg DM(Z, Q) — CAlg D(C) = cdga
RedRC(Y) =~ Q.cw(Yc)
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@ Two main features of the category of motives DM(Z, Q):

» RHom’s are governed by K-theory.

» There are realization functors to the various Weil cohomology theories
on the level of derived categories. These upgrade naturally to
categories of highly structured commutative algebras in derived

categories.
@ For instance, there’s a “de Rham realization functor”

Rear : CAlg DM(Z, Q) — CAlg D(C) = cdga
RedRC(Y) =~ Q.cw(Yc)

=, (Ye) if Yis affine.
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o Let Aug(Y) := mo Hom(C(Y), 1).
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@ Let Aug(Y) := moHom(C(Y), 1).
@ A Z-point y € Y(Z) gives rise to an augmentation

(C(Y)—> C(Z2) =~ 1) € Aug(Y).
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@ Let Aug(Y) := moHom(C(Y), 1).
@ A Z-point y € Y(Z) gives rise to an augmentation

(C(Y)—> C(Z2) =~ 1) € Aug(Y).

@ The augmented algebra C(Y) — 1 remembers the prounipotent
completion of 71 with its many extra structures.
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@ Let Aug(Y) := moHom(C(Y), 1).
@ A Z-point y € Y(Z) gives rise to an augmentation

(C(Y)—> C(Z2) = 1) € Aug(Y).

@ The augmented algebra C(Y) — 1 remembers the prounipotent
completion of 74 with its many extra structures.

@ So there are good reasons to be interested in these mysterious
augmentations, and the question should be
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Let Aug(Y) := mo Hom(C(Y), 1).
A Z-point y € Y(Z) gives rise to an augmentation

(C(Y)—> C(Z2) = 1) € Aug(Y).

@ The augmented algebra C(Y) — 1 remembers the prounipotent
completion of 74 with its many extra structures.

@ So there are good reasons to be interested in these mysterious
augmentations, and the question should be

What, if anything, can we say about them?
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Let Aug(Y) := mo Hom(C(Y), 1).
A Z-point y € Y(Z) gives rise to an augmentation

(C(Y)—> C(Z2) = 1) € Aug(Y).

@ The augmented algebra C(Y) — 1 remembers the prounipotent
completion of 74 with its many extra structures.

@ So there are good reasons to be interested in these mysterious
augmentations, and the question should be

What, if anything, can we say about them?
Answer:
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Let Aug(Y) := mo Hom(C(Y), 1).
A Z-point y € Y(Z) gives rise to an augmentation

(C(Y)—> C(Z2) = 1) € Aug(Y).

@ The augmented algebra C(Y) — 1 remembers the prounipotent
completion of 74 with its many extra structures.

@ So there are good reasons to be interested in these mysterious
augmentations, and the question should be

What, if anything, can we say about them?

Answer:
» We can say a lot about abelian varieties
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Let Aug(Y) := mo Hom(C(Y), 1).
A Z-point y € Y(Z) gives rise to an augmentation

(C(Y)—> C(Z2) = 1) € Aug(Y).

@ The augmented algebra C(Y) — 1 remembers the prounipotent
completion of 74 with its many extra structures.

@ So there are good reasons to be interested in these mysterious
augmentations, and the question should be

What, if anything, can we say about them?

Answer:

» We can say a lot about abelian varieties
» and about G,-torsors:
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Theorem (Immediate from Ancona et. al. and lwanari)
If A is an Abelian variety, then Aug(A) = A(K) ® Q. J
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Theorem (Immediate from Ancona et. al. and lwanari)
If A is an Abelian variety, then Aug(A) = A(K) ® Q.

Theorem
If M* — A is a Gy -torsor, then Aug(M*) is a K* ® Q-torsor over A(K) ® Q. )
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Theorem (Immediate from Ancona et. al. and lwanari)
If A is an Abelian variety, then Aug(A) = A(K) ® Q.

Theorem
If M* — A is a Gy -torsor, then Aug(M*) is a K* ® Q-torsor over A(K) ® Q. )

This allows us to extend the theory of Néron-Tate heights on abelian
varieties to motivic augmentations.
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@ There’s a homomorphism

Pic(A) — {functions Aug(A) — R}
M- FIM.
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@ There’s a homomorphism

Pic(A) — {functions Aug(A) — R}
M- F)M.

@ Some properties:
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@ There’s a homomorphism

Pic(A) — {functions Aug(A) — R}
M- F)M.

@ Some properties:

> If M is ample and symmetric, then huis a positive definite quadratic
form.
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@ There’s a homomorphism

Pic(A) — {functions Aug(A) — R}
M- F)M.

@ Some properties:

> If M is ample and symmetric, then huis a positive definite quadratic
form.
> If in addition My € Pic°(A), then there’s a constant C > 0 such that

A, (@)] < C - \Am().
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@ Depending on the choice of a vector 0 in the fiber of M above 0, there
are local “Néron-Tate height functions”

AMy Aug(MZ‘(v) - R

(at all places v of K)
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@ Depending on the choice of a vector 0 in the fiber of M above 0, there
are local “Néron-Tate height functions”

AMy Aug(M;v) - R

(at all places v of K)

@ such that if
Aug(M*) — Aug(A)

maps

then

Pu(@) = > Amy(@).
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If v is any place of K, then there’s a commuting square

X(K) X(Kv)
Aug(X) — Aug(Xk,)-

Ishai Dan-Cohen A motivic Weil height machine for curves

March 17, 2025

20/38



If v is any place of K, then there’s a commuting square

X(K) X(Kv)
Aug(X) — Aug(Xk,)-

Definition
An augmentation a € Aug(X) is locally geometric if for each place v, the
image of a in Aug(Xk,) lies in the image of X(K,).

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 20/38



If v is any place of K, then there’s a commuting square

X(K) X(Kv)
Aug(X) — Aug(Xk,)-

Definition
An augmentation a € Aug(X) is locally geometric if for each place v, the
image of a in Aug(Xk,) lies in the image of X(K,).

We denote the set of such by Aug'®(X).
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Pulling back along maps from curves to abelian varieties, we obtain a
theory of Weil heights on locally geometric augmentations:
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Pulling back along maps from curves to abelian varieties, we obtain a
theory of Weil heights on locally geometric augmentations:

Theorem (Motivic Weil height machine)
There’s a homomorphism

{functions Aug'®(X) — R}

Le—h
{bounded} -

Pic(X) —

such that if f : X — A is a morphism to an abelian variety and M € Pic A,
then

hpp = F*Ay.
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Pulling back along maps from curves to abelian varieties, we obtain a
theory of Weil heights on locally geometric augmentations:

Theorem (Motivic Weil height machine)
There’s a homomorphism

{functions Aug'®(X) — R}
{bounded}

Pic(X) — Lo h

such that if f : X — A is a morphism to an abelian variety and M € Pic A,
then

hpp = F*Ay.

We may equally work with augmentations defined over an algebraic closure.
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Let me now sketch how to get from here to MMD.
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Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X.
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Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X. Suppose

fi,....,: X—>A

are Z-linearly independent modulo constant functions.
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Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X. Suppose

fi,....,: X—>A

are Z-linearly independent modulo constant functions. Then the MWHM
may be used to show that for @ € Aug'¢(X) with h, () sufficiently large,
the points

fi(a),...,f(a) € Aug(A) = A(K)®Q

are Q-linearly independent.
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Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X. Suppose

fi,....,: X—>A

are Z-linearly independent modulo constant functions. Then the MWHM
may be used to show that for @ € Aug'¢(X) with h, () sufficiently large,

the points
fi(a),...,f(a) € Aug(A) = A(K)®Q

are Q-linearly independent. This means that under the conditions of the
theorem, rational points have bounded height.
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Let me now sketch how to get from here to MMD. We fix an ample line
bundle L on X. Suppose

fi,....,: X—>A

are Z-linearly independent modulo constant functions. Then the MWHM
may be used to show that for @ € Aug'¢(X) with h, () sufficiently large,
the points

fi(a),...,f(a) € Aug(A) = A(K)®Q

are Q-linearly independent. This means that under the conditions of the
theorem, rational points have bounded height. Our version of Nothcott’s
theorem says that such a set has finite image in Aug(J) for any abelian
variety J.
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The de Rham dga of an abelian variety Ac over C is equivalent to the cdga
with zero differential

ar(Ac) = Sym H;R(AC)'
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The de Rham dga of an abelian variety Ac over C is equivalent to the cdga
with zero differential

ar(Ac) = Sym H;R(AC)'

A similar statement holds motivically:
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@ Let D = DM(Z,Q) (Z = SpecK) and let

&zlug(Y) = Homcng(C(Y), ]1).

Ishai Dan-Cohen A motivic Weil height machine for curves



@ Let D =DM(Z,Q) (Z = SpecK) and let

ﬂug(Y) = Homcmg@(C(Y), ]1).

@ Ancona et. al. construct M{(A) € DM(Z, Q) by considering the sheaf
of Q-vector spaces A ® Q.

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 25/38



@ Let D =DM(Z,Q) (Z = SpecK) and let

ﬂug(Y) = Homcmg@(C(Y), ]1).

@ Ancona et. al. construct M{(A) € DM(Z, Q) by considering the sheaf
of Q-vector spaces A ® Q.

o LetM' = M.
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@ Let D =DM(Z,Q) (Z = SpecK) and let
ﬂug(Y) = Homcmg@(C(Y), ]1).

@ Ancona et. al. construct M{(A) € DM(Z, Q) by considering the sheaf
of Q-vector spaces A ® Q.

o Let M' = M1V .
@ Iwanari shows that

C(A) = SymM'(A).
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@ Let D =DM(Z,Q) (Z = SpecK) and let
ﬂug(Y) = Homcmg@(C(Y), ]1).

@ Ancona et. al. construct M;(A) € DM(Z, Q) by considering the sheaf
of Q-vector spaces A ® Q.
o LetM' = M.
@ Iwanari shows that
C(A) = Sym M'(A).

Thus,

Aug(A) = Homp (M'(A), Q(0)) = Homp(Q(0), M1 (A)) = A(K) ® Q.
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If Yc is smooth over C and Lc — Y( is a line bundle with first Chern class
Car € HgR(Yc) and associated G,-torsor L*,
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If Yc is smooth over C and Lc — Y( is a line bundle with first Chern class
Car € HgR(Yc) and associated G,-torsor L*, then

Qe (L7) = Qea(Y)IH]/(dt = Car)-
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If Yc is smooth over C and Lc — Y( is a line bundle with first Chern class
Car € HgR(Yc) and associated G,-torsor L*, then

Qe (L7) = Qea(Y)IH]/(dt = Car)-

More precisely,
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If Yc is smooth over C and Lc — Y( is a line bundle with first Chern class
Car € HgR(Yc) and associated G,-torsor L*, then

Qe (L7) = Qea(Y)IH]/(dt = Car)-

More precisely, if
Cl-2] 25 Cie(Ye) —» E

is the cofiber of c4r

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025 27/38



If Yc is smooth over C and Lc — Y( is a line bundle with first Chern class

Car € H§R(Yc) and associated G,-torsor L*, then
Q(L7) = Q5u(V)[1/ (et - car).

More precisely, if
Cl-2] 25 Cie(Ye) —» E

is the cofiber of cgr then the induced square

Sym CdR(Yc) E—— Sym E

| |

Car(Yc) — Car(L)
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If Yc is smooth over C and Lc — Y is a line bundle with first Chern class

car € H5(Yc) and associated Gp-torsor L*, then
Qe (L") = Qe (Y)[t]/(dt = car).

More precisely, if
Cl-2] 25 Cie(Ye) —» E

is the cofiber of cgr then the induced square

Sym CdR(Yc) E—— Sym E

| |

Car(Yc) — Car(Ly)

is a homotopy pushout square.
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Now let Y be smooth over K and L a line bundle over Y.
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Now let Y be smooth over K and L a line bundle over Y. Let

ct - M\ (Gm)[-1] = Q(-1)[-2] = C(Y)

be the motivic first Chern class,
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Now let Y be smooth over K and L a line bundle over Y. Let
ct - M\ (Gm)[-1] = Q(-1)[-2] = C(Y)
be the motivic first Chern class, and let

Q(-1)[-2] = C(Y) = E — Q(-1)[-1] = M"(Gm)

be the cofiber in D.

Ishai Dan-Cohen A motivic Weil height machine for curves March 17, 2025

28/38



Now let Y be smooth over K and L a line bundle over Y. Let
ct - M'(Gm)[-1] = Q(-1)[-2] = C(Y)
be the motivic first Chern class, and let
Q(-1)[-2] = C(Y) = E = Q(-1)[-1] = M'(Gm)

be the cofiber in D.

Theorem (The motivic cochain algebra of a G,,-bundle)

The square
Sym C(Y) ——=SymE

L

C(Y) ——C(L")

is (homotopy) coCartesian.
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@ Hence, the augmentation space sits in a homotopy pullback square

Homp (C(Y).Q(0)) < Homyp (E, Q(0)) < Aug(Gm) = K*®Q

| |

Aug(Y)

Aug(L*)
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@ Hence, the augmentation space sits in a homotopy pullback square

Homp (C(Y).Q(0)) < Homyp (E, Q(0)) < Aug(Gm) = K*®Q

| |

Aug(Y) Aug(L*)

@ It follows that Aug(L*) has the structure of a K* ® Q-torsor over
Aug(Y).
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Let P be the pushout

SymC(Y) ——=SymE
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Let P be the pushout

SymC(Y) ——=SymE

L

c(Y)——=P.

Then by base-changing everything to C(Y) we find that P is also a
pushout

Symc(y) C(Y) — Symgy) C(L%)

| |

c(Y) P.
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Symgy) C(Y) — Symg(y) C(L7)

| |

c(Y) P.

The copy of C(L*) in the upper right comes from the Gysin sequence

mult. by ¢t

CYV)(=N[-2] ———= C(Y) = C(L7) = C(V)(-1)[-1]. ()
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Symgy) C(Y) — Symg(y) C(L7)

| |

c(Y) P.

The copy of C(L*) in the upper right comes from the Gysin sequence

mult. by ¢t

CY)(=1)[-2] ——=C(Y) = C(L7) = C(V)(-)[-1]. ()

This shows that P may be identified with the “relatively free commutative
algebra” generated by the pointed object

C(Y) - C(L*)

of MOdc(y).
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Lurie’s theory of free algebras shows that
P = colim C(L*)°"®
is given by the colimit of a diagram

C(L*)CL® : Fininj - MOdc(y)

which mixes the symmetric group actions on the tensor powers of C(L*)

with multiplication by the 1st Chern class c*.
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Lurie’s theory of free algebras shows that
P = colim C(L*)°"®
is given by the colimit of a diagram
C(L*)°"® : Finiyj — Modg(y)

which mixes the symmetric group actions on the tensor powers of C(L*)
with multiplication by the 1st Chern class ct. Using the fact that Modcy)
is tensored over rational spaces, we may decompose the colimit as

P = colim,, Symg(y) C(L").
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Taking symmetric powers over C(Y) in the exact triangle

mult. by ct

CYENF2l —— C(Y) = C(L) = (-1 ()
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Taking symmetric powers over C(Y) in the exact triangle

mult. by ct

C(Y)(-1)[-2] —— C(Y) - C(L") » C(V)(-1)[-1]. ()
we get exact triangles

Sym’é_&) C(L") - Sym{y) C(L*) = Symgyy C(Y)(-1)[-1].
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Taking symmetric powers over C(Y) in the exact triangle

mult. by ct

C(Y)(-1)[-2] —— C(Y) - C(L") » C(V)(-1)[-1]. ()
we get exact triangles

Sym’é_&) C(L") - Sym{y) C(L*) = Symgyy C(Y)(-1)[-1].

We have

Symg(yy C(Y)(-1)[-1] =0 forn>2.
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Taking symmetric powers over C(Y) in the exact triangle

mult. by ct

C(Y)(-1)[-2] —— C(Y) - C(L") » C(V)(-1)[-1]. ()
we get exact triangles
Sym’é_&) C(L") - Sym{y) C(L*) = Symgyy C(Y)(-1)[-1].

We have
Symg(yy C(Y)(-1)[-1] =0 forn>2.

So finally,

P = colim(C(Y) —» C(L*) = C(L*) = C(L*) = ---) = C(L").
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I'll indicate why our heights of locally geometric augmentations on curves
are well defined up to bounded functions.
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I'll indicate why our heights of locally geometric augmentations on curves
are well defined up to bounded functions.

The main point is to show that if

f:X—>A

trivializes a line bundle L on A,
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I'll indicate why our heights of locally geometric augmentations on curves
are well defined up to bounded functions.

The main point is to show that if

f: X—>A
trivializes a line bundle L on A, then

Aug?(X) — Aug(A) MR

is bounded.
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Since f*L = Oy, f lifts to a map

f:X—>L"
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Since f*L = Oy, f lifts to a map

f: X—L"

We spread out f to a map i
f:X—>L"

over an open subscheme Z c Spec Ok where everything has good
reduction.
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Since f*L = Oy, f lifts to a map

~hl

X = L™

We spread out f to a map i
f:X—>L"

over an open subscheme Z c Spec Ok where everything has good
reduction. Now since X is projective, X(K,) is in a suitable sense bounded
for every v,
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Since f*L = Oy, f lifts to a map

X > L*

—h?

We spread out f to a map i
f:X—>L"

over an open subscheme Z c Spec Ok where everything has good
reduction. Now since X is projective, X(K,) is in a suitable sense bounded
for every v, hence so is its image

f(X(K.)) < L7(K).
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Since f*L = Oy, f lifts to a map

—h?

X > L*

We spread out f to a map i
f:X—>L"

over an open subscheme Z c Spec Ok where everything has good
reduction. Now since X is projective, X(K,) is in a suitable sense bounded
for every v, hence so is its image

f(X(K.)) < L7(K).
Moreover, the local Néron-Tate height

A[_’v L*(K\/) i R

is bounded on bounded subsets.
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Further, at v € Z a place of good reduction, 1, , vanishes on the O,-lattice

L(0y) c L7(Ky).
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Further, at v € Z a place of good reduction, 1, , vanishes on the O,-lattice

L(0v) c L(Ky).

We find that for a ranging over Auglg(X), the sum

is a finite sum of bounded functions.
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