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1. ADIC SPACES

1.1. A topological ring A is Huber if it admits an open subring A, C A
which is adic with respect to a finitely generated ideal of definition. A
subset S C A is bounded if for all open neighborhoods U of 0 there exists
an open neighborhood V of 0 such that VS C U. A pseudo-uniformizer is
a topologically nilpotent unit; a Huber ring is 7ate if it contains a pseudo-
uniformizer; when this is the case, and if Ay C A is any ring of definition and
g is any topologically nilpotent unit, then for n sufficiently large, g" € A,
and then A is g"-adic and A = Ao[(go)~'].

An element x € A is power-bounded if {x" | n € N} is bounded; A° C A
denotes the subring of power-bounded elements. A subring A* C A° is a
ring of integral elements if it is open and integrally closed in A. A Huber
pair is a pair (A,A") where A is Huber and A* C A is a ring of integral
elements. A Tate-Huber pair or affinoid pair is a Huber pair in which A
is Tate; see, for instance, Definition 2.6 of [7]. In a similar way, given an
affinoid pair (A, A™), we may speak of an affinoid (A, A*)-algebra.

1.2. A totally ordered abelian group I' is required to obey
y <7y implies &y <dy'.
Similarly for totally ordered commutative monoid. If I' is a totally ordered
group, we endow I' U {0} with the structure of a totally ordered monoid by
declaring
Oy=0 and O0<vy
for all y € I'. A continuous valuation is given by a totally ordered abelian
group I and a map
A—->TUuU{0}
such that 0] = O, |1| = 1, |ab| = |allbl, la + b] < max(|al,|b|), and for all
v € T lying in the image of | - |, the set {a € A | lal < y} is open in A. The
adic spectrum Spa(A, A™) has underlying set the set of equivalence classes
of continuous valuations such that [A*| < 1. The topology is generated by
open subsets of the form

{x [ 10l < gl # 0}

with f,g € A. For s € Aand T C A a finite subset that generates an open
ideal, the associated rational subset is given by

T
U(=) ={xeX||tx)] < |s(x)| # 0 forallt € T}.
s
Let X = Spa(A,A")andlet U = U (%) C X be a rational subset. We set
A(T/s) = AT1]s]
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in which the completion is with respect to a certain topology in which #/s
is power-bounded for every r € T, and let A(T/s)* be the completion of
the integral closure of the image of A*[¢/s|t € T] in A[1/s]. See §8.1 of
Wedhorn’s notes [9] or Theorem 3.1.3 of Scholze-Weinstein [8].
Define
(Ox(U), 0x(U)) = (A(T/s), AT s)").

The Huber pair (A, A*) is sheafy if Ox may be extended to a sheaf (by tak-
ing inverse limits over rational subsets). In this case, the stalks are local
rings and they have naturally induced valuations. The affinoid adic space
Spa(A, A*) consists of the topological space defined above, the structure
sheaf Oy, and the induced valuations on the stalks up to equivalence of
valuations.

1.3. An adic space is a triple (X, Oy, {| - (x)|}xex) Where X is a topological
space, Oy is a sheaf of topological rings, and for each x € X, | - (x)| is an
equivalence class of continuous valuations on Oy, which is locally of the
form Spa(A, A+). A morphism of adic spaces includes the data of commut-
ing squares

Oy —— Oxx

| |

I_‘f()c) U {0} — rx U {O}’

but (recalling that up to equivalence of valuations we may always assume
the value group is generated by the image of the valuation) these are uniquely
determined.

Example 1.4. If A is a topological ring, then we let A(¢*) denote the ring
of bidirectional power series ), a,t" over A such that a, — 0 in both
directions. Let D = Spa(Q,(t), Z,(t)). Then

1
T := U(;) = Spa(Q,(r*), Z,(r*)).

Here, the ring Q,(r*) of “birestricted formal power series” arises as the
p-adic completion of the ordinary localization Q,(#)["']. In modern termi-
nology, ‘T stands for torus. However, as I learned from Coleman, Dwork
used to refer to this adic space (or rather to the associated rigid analytic
space) as the “unit tire.”

1.5. Fibered products X X Y of adic spaces sometimes exist. When they
do, typically the induced map of topological spaces

|X Xz Y — |X| X|Z| |Y|

is surjective with finite fibers.
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1.6. If X is affinoid, then H'(X, Ox) = 0 for i > 0.

2. PERFECTOID SPACES

2.1. A Huber ring is uniform if A° is bounded. A perfectoid Tate ring is a
complete uniform Tate ring which admits a pseudo-uniformizer @ such that
p € @w’R°

(which becomes automatic in characteristic p) and such that the pth power
Frobenius map
®:R° - R°/w’
is surjective.! The tilt of a perfectoid Tate ring is the topological multiplica-
tive monoid given by
R’ = lim R
x<r—>_xl’

with addition defined by
@020, )+ 00D, ) = (@0,
where ‘ . .
Z(l) — r}i_)rg(xmn) + y(l"'”))p”_
Let’s call a Huber-Tate pair (R, R") perfectoid just in case R is a perfectoid
Tate ring. The tilt of a perfectoid Tate-Huber pair (R, R") is given by
(R,R*)’ = (R",R").

Example 2.2. Let Q;yd be the completion of Q,(i,~). Then Qf,yd is perfec-
toid with tilt
(@) = Fy((0/7)
where
t=01,8p,0p,...) -1
for a compatible system of primitive p-power roots of unity. The Galois

group
75 = Gal(Q,(1y=)/Qy)

acts on F,((t'/77)) via
t> 1+ -1,

We record some basic facts about perfectoid Tate-Huber pairs; we will
not have occasion to make explicit use of these in the sequel.

Lemma 2.3. Let (R, R") be a perfectoid Tate-Huber pair.
n fact, this is implied by the apparently weaker condition that the composition
R° 2, R°/w? -» R°/p

be surjective.
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(1) There exists a pseudo-uniformizer @w € R with p € @w”R° that admits
a sequence of p-power roots, giving rise to an element
o’ = (w,wl/”, ...)E R

which is a pseudo-uniformizer of R".

(2) The set of rings of integral elements R* C R° is in bijection with the
set of rings of integral elements R** C R™.

(3) We have

R* /@’ > R w.

2.4. Let’s sketch the construction of the map from (3). We have an isomor-
phism of multiplicative monoids R”* = lim R*. So projection onto the Oth
coordinate defines a map of monoids (solid arrows)

R =limS* —— R*

-
R /w.

We claim that the composite f with the projection, as shown, is additive.

Indeed
0 1 0 1 0
SO 6D, )+ 0000,.00)) =9
= lim (x™ + y™)”"
n—oo
= 0 4 ,O

+y mod .

Clearly f(w@") = @, which gives us the map. 2

2.5. A perfectoid space is an adic space X covered by affinoid adic spaces
U with Ox(U) perfectoid. The tilts defined above glue to provide global
tilts.

Theorem 2.5.1. For any perfectoid space with tilt X”, the functor
Y ¥

induces an equivalence of categories between perfectoid spaces over X and
perfectoid spaces over X". See, for instance, Theorem 7.1.4 of [SW]. This
equivalence restricts to an equivalence of small étale sites.

’In fact, the same construction equally produces a map
() R* /(@) — R*[w".
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3. THE ETALE TOPOLOGY

3.1. According to definition 1.2.1(v) of Huber’s book [3], a morphism f :
X — Y of adic spaces is locally of finite presentation essentially if in affi-
noid patches

Uu-YV

it’s given by morphisms of Huber pairs that are in a suitable sense topolog-
ically of finite type: strangely, you impose an additional condition only if
O(V) happens to be discrete, in which case you require

OWU) « O)

to be of finite presentation in a suitable sense. The morphism f is étale
according to Huber if it’s locally of finite presentation, and for any Huber
pair (A, A™), any square-zero ideal I of A, and any morphism
Spa(A,A™) — ¥,
the map
Homy ( Spa(A,A™), X) — Homy (Spa(A/I,A"/I), X)
is bijective. The morphism f is finite if in affinoid patches as above, in
addition to a suitable topological finite type condition, both
OU) < O(V) and O"(U) <« O°(V)

are integral ring extensions.

3.2. Scholze, in his thesis [6], defines étale morphisms differently. Let’s put
ourselves in his setting by fixing a base field k equipped with a nontrivial
valuation with values in R.o. Set k" = k°. A map of affinoid (k, k™)-algebras

(R,R") = (5,57)

is finite étale according to Scholze’s thesis if R — S is finite étale in the
sense of algebraic geometry, S has the induced topology, and S * is equal to
the integral closure of A" in §. A morphism of adic spaces

f:X->Y

of adic spaces over Spa(k, k*) is finite étale according to Scholze’s thesis if
there exists an open affinoid cover ¥ = (JY; such that each X; = f “1Y: is
affinoid, and each induced map

Xi_>Yi

is finite étale in the above sense. Finally, f is étale according to Scholze’s
thesis if for each x € X there exists an open neighborhood U of x, an
open neighborhood V of f(U), and a factorization of the induced map
U — V into an open immersion followed by a finite étale map according
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to Scholze’s thesis. Scholze comments that these definitions allow one to
restrict attention to perfectoid spaces despite those being always reduced.
Perfectoid spaces, it is said, are rarely locally Noetherian. On the other
hand, if we do restrict attention to locally Noetherian adic spaces, then ap-
parently the two definitions coincide. Here we will make only very brief
use of the étale site of a non-Noetherian adic space. In any case, below
we’ll simply say “étale” and leave it for another day to adjudicate between
the two definitions.

3.3. If X is an adic space, then étale opens and surjective étale maps form
a site. We denote the étale site by X. We denote the topos associated to a
site by decorating with a tilde.

3.4. Basic aspects of the theory of the étale fundamental group may be im-
ported into the adic setting without change. The finite surjective étale maps
form a Galois category Cov(X). There are typically “geometric points”

x:S =Spa(K,K") - X
such that S, ~ Set. Geometric points give rise to fiber functors
wy : Cov(X) — FinSet.
These, in turn, give rise to profinite groups
7'(X, x) = Aut (w,).
If A is an Artin ring, then there’s an equivalence of categories
L L,

between locally constant sheaves of finite A-modules and continuous 7 -
representations in finite A-modules; the equivalence interchanges the global
section functor and the invariants functor.

3.5. Let us sketch a first application of perfectoid methods to establish an
important basic property of the étale cohomology of adic spaces. This ma-
terial will not be used in the sequel.

Theorem (4.9 of [7]). Let X be a connected affinoid noetherian adic space
over Spa(Q,, Z,). Fix a geometric base-point x. Let L be a locally constant
sheaf of F,-vector spaces. Then the map

i(é I
(*) Hcom(ﬂf]:t(Xa X), Lx) — H (Xéh L)

18 1S0.
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Sketch. Spaces that are finite étale over X form a site Xy¢. One interprets f
as the map of topoi

induced by the evident inclusion of sites Xt C X¢. Using the Leray spectral

sequence, one is reduced to showing that R'f,IL. = 0 for i > 0. Since R'f.L
is the sheaf associated to the presheaf

U H'(Ug, L),

it’s now enough to show that any section of this presheaf is locally in the
finite-étale topology zero. Renaming U = X, it’s enough to show that any
cohomology class in H(Xg, L) maps to zero in a finite étale cover. At this
point, Scholze imports a construction due to Colmez which provides a per-
fectoid space X, given (in a suitable sense) as a limit of finite étale covers
X; — X such that X, has no nontrivial finite étale covers; with its help,
we’re reduced to showing that H'(X. ¢, L) = 0 for i > 0. We now use the
equivalence of étale sites

Koogt = Xzo,ét’

the Artin-Schreier exact sequence
0—->F, >0 — 0y —0,

and the vanishing H'(Y,Oy) = 0 (i > 0) for affinoid Y. O
4. THE PROETALE TOPOLOGY

4.1. LetC be a category and recall that colimits in Fun(C, Set) are computed
object-wise, meaning that for each X € C, the associated evaluation functor

Fun(C, Set) — Set
preserves colimits. Of course, colimits in Fun(C, Set) may be identified with
limits in Fun(C, Set)°P.
By contrast, the contravariant Yoneda embedding
y : C — Fun(C, Set)®

does not in general preserve limits. We refer to objects of Fun(C, Set) as
copresheaves. A category [ is said to be cofiltered if it’s nonempty, if given
objects i, j there exists a span i « k — j, and if given parallel arrows

i3]
there exists a morphism k — i which equalizes the two arrows.

The pro-category Pro(C) is the full subcategory of Fun(C, Set)°® spanned
by those copresheaves that are cofiltered limits of corepresentable copresheaves.
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A calculation involving the Yoneda lemma and little else shows that if
F, G € Pro(C) are given as limits of corepresentable copresheaves as

F=lmF@) and G =limG()).
i€ JE
then
(*) Hom(F, G) = lim colim;e; Hom (F(2), G(j))-
Jje

There’s a categorical universal mapping property which we will not use ex-
plicitly. More important for us is that Pro(C) is itself closed under cofiltered
limits. For the construction, one shows that if F is a limit of objects in
Pro(C) computed in the category Fun(C, Set)° of copresheaves, then the
undercategory Cy, is cofiltered and F is the limit of the forgetful functor

CF/ - Fun(C, Set)OP.
See Chapter 6 of Kashiwara-Shapira [4].

4.2. If C admits finite limits, then so does Pro(C), and the embedding p :
C < Pro(C) preserves finite limits. For the latter statement, one considers a
finite limit diagram C = lim C; in C and an arbitrary test object 7' € Pro(C)
and computes Homp,oc) (T, C) using the fact that filtered colimits commute
with finite limits in the category of sets. See lecture notes by Jacob Lurie

[5].

Remark 4.3. By contrast, the embedding y : C — Fun(C, Set)? rarely
preserves pullbacks. Indeed, if y preserves the pullback square

P—Y
X— 7,
then for every T € C, the square
Hom(P, T) «+—— Hom(Y, T)
Hom(X,T) +— Hom(Z,T)

is a pushout square in the category of sets. So for a concrete counterexample
(of some relevance to us), let C be the category of topological spaces, let
X, Y be proper open subspaces of a topological space Z, and let T = P be
the intersection.
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4.4. Let X be an adic space. Facts mentioned below without proof may only
hold under some noetherianity assumptions. An object of Pro(Xg) might be
called a “pro-(étale open)” of X. Since later we’ll want to distinguish some
of these and to call them “pro-étale opens” of X, let’s refer to the former as
an étale tower (or simply a tower).

Given towers Y, Z as above, for every j € J there’s evidently a map

gq; : Hom(Y,Z) — colim;;; Hom (Y (i), Z())).

Fix j. Then for any f : Y — Z, g;(f) may be represented by an actual
morphism

Jij 2 Y() = Z())
for any i sufficiently large. Moreover, given any j' > j, there exists an i’ > i
and a commuting square

N .
Y(i') — Z(J)

|

YD) —— Z()).

In this case, let’s say that f; ; dominates f;;. I believe a morphism f as
above should be considered surjective if every associated morphism f; ; of
ordinary étale opens is dominated by a surjective morphism.
A morphism
Uu-V
of towers is étale if it arises as a pullback of an étale morphism of (ordinary)
étale opens of X. Similarly for finite étale.
A morphism of towers as above is proétale if U may be written as a
filtered limit
U=lmU; -V
of towers U; over V (that is, a limit in the overcategory (Pro X)), with
each
Ui -V
an étale morphism of towers, and such that for all i > j sufficiently large,
the morphism of towers U; — U is finite étale and surjective.

4.5. If U is a tower, we define the underlying topological space by
|U| = lim |U;|.

One can see this is well defined as follows. The category of cofiltered dia-
grams F' : I — C in a category C with homs defined by the formula 4.1(*)
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maps equivalently to ProC. Given diagrams U : I — Xg, V : J — Xg,
there are natural maps

lim; colim; Hom(U;, V)
1
lim; colim; Hom(|Uyl, |V;|)
1
lim]’ Hom(hm, |Ul'|, |V]|)

[
Hom(lim; [Uj], 1im; |V])

which make U + |U| into a functor on the category of diagrams.

4.6. We define the proétale site X0 as follows. Objects (which we’ll refer
to as proétale opens of X) are those étale towers over X which are proétale
over X. Morphisms are just morphisms of towers. A covering is given by a
family of proétale morphisms

{fi:Ui= U}

such that the maps
Uil = |UI
of underlying topological spaces are jointly surjective.

Remark 4.7. The objects of the proétale site may be made somewhat more
concrete as follows. Suppose the tower U € Pro(Xg) belongs to proét(X)
and write U = lim U; — X as above, where now X plays the role of V. The
requirement that U; — X be étale means that we have a pullback square

U,L)X

|k

Ui—X
in Pro(X) in which f” is an étale morphism in X. In particular, X’ belongs
to X4 and so g’ is a section of an étale cover of X, hence (at least under mild
assumptions) an isomorphism onto a union of components. It follows that
U, is just an étale open of X. Thus, to summarize, any proétale open of X
may be written as a limit (computed in the Pro(Xy)) of a cofiltered diagram
of étale opens of X in which the structure maps are eventually finite étale.

Proposition 4.8. This defines a site.
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Sketch. We have to show, for instance, that if ' : U — V is a proétale cover
of a proétale open, and W — V is a morphism of proétale opens, then the
pullback U Xy W exists and

fw i Uxy W—->W
is a proétale cover. The existence follows formally from the existence of
products of étale opens, and we take this as given. A not purely formal

point is the surjectivity of the map of underlying topological spaces. In
fact, there’s a commuting square of topological spaces

U xy W] -2 1w

|

Ul —— |V
hence a map
() U xy W| = U] X [W]

factoring |fw|, and it’s enough to show that (*) is surjective. (Case 0) When
U,V,W € X4 are ordinary étale opens of X, it’s a general fact that (*) is
not only surjective, but also has finite fibers. (Case 1) Suppose next that
UV € X but W € Xyr0s. Write W = lim W; with W; € X, the limit being
computed in Pro(X4). We have, by definition,

(A) |U xy W| =~ lim|V xy Wil
We also have
(B) lim |U| Xy [Wi| = |U| Xy, |W]

because fiber products commute with inverse limits. We claim that the map
A — B has nonempty compact fibers. In deed, this is a general fact about
topological spaces as follows. Let {f; : A; — B;}; be a map of filtered limit
diagrams of topological spaces such that each f; is surjective with compact
fibers and fix b — B a point. Then

A XB b= hm(A, XB,- b)

is a limit of nonempty compact spaces, hence (by an application of Ty-
chonoff’s theorem) compact and nonempty. (Case 3) Turning to the general
case with U, V, W € X[« proétale opens, we fix a pro€tale presentation

J

and apply the same argument as in case (2), this time taking limits over
J: u



THE PROETALE TOPOLOGY 13

4.9. Let K be a perfectoid field of characteristic 0 with an open and bounded
valuation subring K* C K, and let X be an adic space over Spa(K, K*).
Some of the assertions below may depend on a suitable noetherianity con-
dition. A finite étale tower U = {U,}ie; € Xproat 18 affinoid perfectoid if it
satisfies the following two conditions. (1) We require each U, to be affinoid,
= Spa(R;, R}). In terms of the rings R;, R/, we define

R* = lim(colim;R})/p" and R=R'[p”'].
(2) We require that (R, R*) be a perfectoid Tate-Huber pair.
As a matter of notation, we set
U = Spa(R,R").

Theorem 4.10. Let X be a locally noetherian adic space over Spa(K, K*).
Then every U € Xo¢ admits a proétale cover by affinoid perfectoid spaces.

Example 4.11. Let
T = Tkx+ = Spa(K(t*), K*(1*)).
We re-spell the Huber pair appearing above in terms of the rings
(RG=", K (1)
of birestricted formal power series in #!/7". This implies inclusions
(K'Y, K (1P

The resulting tower

m+1

y) C (K7, K ),

n

T=(-T->T->T)
forms an affinoid perfectoid proétale cover of T. The associated affinoid
perfectoid space is denoted by

T = Spa(K(=1/P7y, K* (177,
The elements of the ring K{¢*'/"") may be represented by formal power

series

i€Z
with d; € Z[1/p] and ¢; € K such that

c;—>0 as i — oo,

and this is helpful when verifying that T is indeed perfectoid.
The same in several variables defines an explicit proétale cover

™ > T"

of the n-fold adic torus.
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Sketch of proof of Theorem 4.10. Fix U € X an affinoid perfectoid. We
restrict attention to the case that X is smooth over (K, K*). Under this as-
sumption, Huber [3, Corollary 1.6.10] shows that X admits an open cover
by adic subspaces that admit an étale map to a perfectoid torus T". Fix such
an open X’ and an étale map

X - T
Let U’ — X’ be the pullback of U, which is now proétale over X’ (hence
also proétale over X). The fiber product
U’ =U' X Tn
exists, and is then proétale both over U’ and over T". Scholze [7, Lemma
4.6] proves that any proétale cover of a perfectoid proétale open (in a suit-

able sense) is again perfectoid, and derives from this that U” may be cov-
ered by affinoid perfectoids.? O

5. COMPLETED STRUCTURE SHEAVES ON THE PROETALE SITE

5.1. Let X be a locally noetherian adic space over Spa(Q,,,Z,,). The evident
functor between sites

Xproét — Xét
induces a morphism of topoi

V. Xproét - Xét-

We set
+.proét | x4+
OX =V X2
A+,proét | - +,proét , pn
O, = hrIanX /p",

(j[;(roét - é:—(,proét[l/p]‘

5.2. Let C be a complete algebraically closed nonarchimedean field con-
taining Q,, and let X be a smooth proper adic space over C. Then the Leray

spectral sequence associated to v and to é‘;(mét has terms
Ey = H(X, Q) (—j) = Hy (X, C).
That is, we have, on the one hand,
H'(Xproa: Ox) = Hy(X, C),
and on the other hand

RIV.O%™ = Q) (- ).

3Technically speaking, this involves a notion of analytic open covers of proétale opens
which we do not go into.
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Our goal for the rest of this lecture is to set the stage for the construction of
this last isomorphism.

Theorem 5.3 (Lemma 4.10 of [7]). Let K be a perfectoid field of character-
istic 0 with an open and bounded valuation subring K* as in paragraph 4.9,
let X be a locally noetherian adic space over Spa(K, K*), and let U € Xyroa
be an affinoid perfectoid proétale open with associated perfectoid space

U = Spa(R,R").

Then
(1) (j;’pmét(U) =R*, and
2) H U0 =0 for i>0,

Example 5.4. We do not discuss the proof of Theorem 5.3. Instead, let us
describe a typical application. Following Bhatt [1], we work over the base
Spa(C, Oc¢) were C is the completion of an algebraic closure of Q,. Then
using Theorem 5.3 we can construct an isomorphism

Hi(T’ é%r(’ét) = Héontinuous(zp(l)’ C<Ti1/pw>)
(i > 0). The construction, in outline, goes as follows. The unit tire written
in the form _ _
T; = Spa (C(T*!'7), 0c(T*!'""))
is in a natural way an étale u,i-torsor over T = Spa (C(T*),O0c(T*)). Let
S = Spa(C,O¢). We define Zp(l) to be the object of S, given by the
tower of (noncanonically constant) étale groups u, over S. Equivalently,

Z,(1) = limu,

where the limit is computed in S ;o¢. This proétale S-group is a “topologi-
cally constant sheaf” in the following sense: given U € § prog,

Z,(1) = Homrep sp. (U], Z,(1)).

On can, in an evident way, base-change Zp(l) to X, and a similar comment
applies over X. The availability of topologically constant sheaves like Z (1)
is a big part of the charm of the proétale site.

Since the torsor structures are compatible for varying i, the affinoid per-
fectoid proétale cover
(*) T-T
. . i/ Aproéty .
1s a Zp(l)—torsor. écc/ordmg to Theorem 5.3(2), H'(T, O;} ) = 0. This
implies that H'(T,O2"") may be computed using Cech cohomology with
respect to the covering (*), hence from a complex of the form

() OPNUT) » OF (T xp T) = O (T xp Tz T) — - - .
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According to Theorem 5.3(1),
OV (T) = (=17,
The torsor structure gives us isomorphisms such as
Z,(1)x TS TxpT.
Together, we have, for instance
OB (T T) = OF°(Z, (1) %1 T)
= Homyp.p (Z,(1), O°(T))
= Homygy.sp. (Z,(1), C(T*/77))

and similar logic shows that the entire complex (**) is isomorphic to the
standard complex computing the continuous group cohomology.

Let us note that the isomorphism marked with a shriek is a continuous
analog of the following classical maneuver. In many familiar sites, the co-
projections of a coproduct form a covering. Suppose U is an object of such
a site C, let ¥ be a sheaf of sets, and let N be a set. Then

F(N x U) = F(UIY) = F(O)" = Homse (N, F (V).

6. THE (COMPLETED) COTANGENT COMPLEX OF THE COMPLETED PROETALE SHEAF
OF BOUNDED FUNCTIONS

6.1. If A — B is a map of rings, we let
A—>Py,—B
be the canonical resolution of B by free A-algebras, and we define the (“al-
gebraic”) cotangent complex by
LB/A - Q‘]DZ;/A ®PZI/A B,
regarded as an object of the derived co-category of B-modules. If X —
Spa(C,Oc) is an adic space, we define L, by a fancy sheafification
X
(in the proétale topology) of the presheaf

/Oc

U | Lé;,pmét(U)/OC.

Proposition 6.2. We have
L ~
La;,proét/oc ®ZI, Fp —_ O
Sketch. I'll only indicate how some of the theorems and propositions men-
tioned above are relevant. We use theorem 4.10 to reduce to showing that

. L ~
L(j;,proel(U)/OC ®Zp Fp = 0
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for affinoid perfectoid U € Xpoe. By Theorem 5.3(1), R* = (j;’pmét(U ) is
perfectoid. By a compatibility of cotangent complexes with derived base-
change, we’re now reduced to showing that Lg+/p)00/p) = 0. Now one
shows that on the one hand, the relative Frobenius

) Fepyocip - RTIp™Y = R /p

of R*/p over O¢/p is zero. Here, while the surjectivity follows directly
from the definition of “perfectoid”, the injectivity is less clear.

On the other hand, relative Frobenius induces zero on cotangent com-
plexes. Indeed, straight from the definition one is reduced to considering
the relative differentials of a polynomial algebra, where the vanishing fol-
lows from the fact that d(#”) = 0. Together, the map of cotangent complexes
induced by relative Frobenius is both zero and an isomorphism, so its source
and target are zero. a

6.3. It may seem strange that we are here interested in the algebraic cotan-
gent complex of a morphism of sheaves of topological rings. My under-
standing is that we make up for ignoring the topology by considering only

a small portion of L 4+ pra . Indeed, above we only considered the quo-
O, ()/Oc

tient by p; below we’ll consider the derived p-adic completion tz(j;-(,pmét 100
whose vanishing apparently follows from the vanishing modulo p. For the
notion of derived completion, and its relationship to the analytic cotangent
complex, see Chapter 7 of Gabber-Ramero arXiv:math/0201175v3 [2].

7. APPENDIX: CALCULATION OF THE DERIVED PUSHFORWARD SHEAVES

Above we introduced the proétale site of an adic space, we explained
what it means to say that (in some level of generality) adic spaces are proé-
tale locally perfectoid, and we demonstrated the use of this principle in two
different sorts of applications. In one direction, we showed in a concrete ex-
ample (5.4) how the cohomology of the completed proétale structure sheaf
may be computed as a continuous group cohomology. In another direction,
we explained how to go in the direction of the vanishing of the derived com-
pletion of the relative cotangent complex of the completed proétale sheaf of
bounded functions (6.3).

This last section forms a kind of appendix in which we indicate briefly
how these two applications contribute to the calculation of the derived push-
forward sheaves R/v,0%°" indicated in paragraph 5.2. As we’ll explain (or
rather, as we’ll merely hint), the vanishing of the derived completion of
the cotangent complex contributes to the computation of the first derived
pushforward R'v.0%°". Meanwhile, continuous group cohomology plays a
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role in climbing up to higher derived pushforwards. The precise statement

(Lemma 3.3.1 of Bhatt [1]) is that R'v,Ox is locally free of rank n and
RiV*éX = /\iRlV*OAx.

It’s not too hard to see why the interpretation in terms of continuous group

cohomology comes into play here, since it gives us concrete complexes to

work with.

We’ll leave it at that and turn instead to the computation of R! v,Oyx. This
is an abbreviated account of the already rather abbreviated account in sec-
tions 3.3. and 3.4 of Bhatt’s AWS notes [1].

Thus, our goal here is to give a rough idea of how the vanishing

(V) Lé;,proél/OC = O
contributes to the construction of a morphism
1. ol 1, Aproét
' QY (-1) - RYv.0F™,

where Q) ,c means analytic differential forms. In addition to the vanishing
(*), a key ingredient in the construction is a theorem due to Fontaine, which,
seen through a certain lens, says that dlog induces a close relationship (if
not quite an isomorphism)

(CR) Oc[1] - N floc/zp.
We consider the sequence
Zp N OC N é;,proét
of sheaves of rings on X,.¢. We apply derived completion to the associated

triangle of cotangent complexes:

A A A+,pr0ét e a ) A )
LOC/Zp®OCOX i Lé;(,procl/zp — LO;,pmct/Oc .

In view of the vanishing of the object on the right, the map on the left is
an equivalence. Inverting p and applying Fontain’s theorem, we obtain an
isomorphism

(*) LO _ O (D[1].

There’s a natural map

(**) V*LOX/ZP b d Z:é)p(mél/zp.

Composing (*) with (**) and using adjunction we obtain a map
Loyz, — Rv.OF(D[1].

Taking H°, we finally get our map

Qb — R'W,07(1).
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