
p-ADIC HEIGHTS AND QUADRATIC CHABAUTY, FALL 2023
LEARNING SEMINAR

Abstract. We learned about the construction of p-adic height functions
and their application to quadratic Chabauty due to Besser, Müller, and
Srinivasan [3]. I gave two talks.

1. Syllabus

Talk 1: Line bundles on abelian varieties. In this talk we review classical
results on line bundles on abelian varieties. If a line bundle L on an abelian
variety A is symmetric ((−1)∗L ' L), then the pullbacks along the sum and
difference maps s, d : A × A⇒ A satisfiy

(Eqn. 19) s∗L ⊗ d∗L ' (π∗1L)⊗2 ⊗ (π∗2L)⊗2

and L⊗2 ' (id × φL)∗P, where P denotes the Poicaré bundle. On the other
hand, L is antisymmetric ((−1)∗L ' L−1) iff its first Chern class is homolog-
ically trivial, iff the associated polarization φL : A → Â is trivial, in which
case

(Eqn. 20) s∗L ' π∗1L ⊗ π∗2L.

These, and other important facts, are recalled in §4.1 of [3]. Main refer-
ences: Lang’s Fundamentals... [6] and Bombieri-Gubler [5].

Talk 2: review of Néron functions. Let K be a finite extension of Qv, X
smooth proper over K, and L a line bundle on X. An (l-adic) valuation on
L is a function vL : L×(Q̄v)→ Q̄l which satisfies the equation

vL(λu) = ordv(λ) + vL(u)

for all λ ∈ Q̄∗v and u ∈ L×(Q̄∗v). There’s a unique way to assign valuations to
rigidified line bundles on abelian varieties so that vL is additive in L, functo-
rial in A, locally constant on L×, is Q-valued with bounded denominator on
L×(K), vanishes on the base-point, and reduces to ordv on the trivial bundle.
When A has good reduction, this reduces to naive intersection in the Néron
model. Confusingly, here v = l; later we’ll use a p-adic idele class character
to move the values to Qp. See §2 of [3]. Main reference: Bombieri-Gubler
[5].
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Talk 3: Vologodsky functions and Besser’s ∂̄-operator. Let K be a finite
extension of Qp. Locally free sheaves F on smooth geometrically con-
nected K-schemes X admit Zariski sheaves FV ∈ Mod(OX) of Vologodsky
sections. There are embeddings

Ωi(X) ⊂ Ωi
V(X) ⊂ Ωi

loc.an.(X).

There are exact sequences of K-vector spaces

0→ K → OV(X)→ Ω1
V(X)→ Ω2

V(X)→ . . .

These are functorial in X and F , and include the p-adic logarithm on Gm.
There are also certain submodules Ω1

V,1(X) ⊂ Ω1
V(X) which sit in short exact

sequences

0→ Ω1(X)→ Ω1
V,1(X)

∂̄
−→ Ω1(X) ⊗ H1

dR(X).
See §3.1 of [3]. References: for Vologodsky’s Frobenius-fixed de Rham
paths, see Definition 3.12 of Betts-Litt [4]. For their use in constructing the
data listed above, see Besser’s p-Adic Arakelov geometry [2] (with further
references back to [1]).

Talk 4: Log functions and curvature forms. A log function on a line
bundle π : L → X is a Vologodsky function logL ∈ OV(L×) such that
d logL ∈ Ω1

V,1(L×) and

logL(λu) = log(λ) + logL(u)

for λ ∈ Q̄∗p and U ∈ L×(Q̄p). A curvature form for L is an element α ∈
Ω1(X) ⊗ H1

dR(X) such that ∪α = c1(L). There’s a correspondence between
log functions and curvature forms such that if α and logL correspond, then

π∗α = ∂̄d logL

in Ω1(L×) ⊗ H1
dR(L×). This is made precise in Proposition 4.4 of Besser [2].

In this talk, we outline the proof of this proposition following loc. cit., and
we work out the case of curves in more detail, following §3.3 of [3].

Talk 5: Canonical log functions over abelian varieties. A line bundle
L over an abelian variety A over a p-adic field admits a canonical log
function logL, depending only on the choice of a curvature form α for
the Poincaré bundle P. We impose a technical condition on α (it must
be “purely mixed”). If L is symmetric, then logL is characterized by the
requirements that the isomorphism of Eqn. 19 respect the induced log
functions and that the associated curvature form be given by 1

2 (id × φL)∗α.
Roughly speaking, the special case L = P gives us a canonical choice of
log function logP on P. If L is antisymmetric, then c1(L) = 0, so there’s
an associated class â ∈ Â, and logL is induced from logP by restricting to
the fiber A × {â}. For general L we obtain logL by mixing log functions
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associated to symmetric and antisymmetric parts of L⊗2. See §4.2-4.4 of
[3].

Talk 6: From log functions back to Néron functions. Besser’s log func-
tions provide an analytic counterpart at places v|p to the discrete input given
by the p-adic valuations at primes v - p. However, going in the opposite
direction, it’s possible to extract a “merely valuative” portion

vL = log(1)
L

of Besser’s log-functions. For this, instead of fixing a value of log p (the
“brach of the logarithm”), we consider the latter as a formal variable, and
then extract the part which is linear in log p. In the case of abelian varieties ,
if we restrict attention to log functions which are in a suitable sense branch-
independent and normalized with respect to the regidification, we obtain
the canonical valuation. See Theorem 9.23 of [3], as well as Zarhin [7] for
portions of the proof.

Talk 7: Global p-adic heights. Let K be a number field. We fix a well-
behaved p-adic idèle class character χ =

∑
χv; this means, among other

things, that we can extract a homomorphism

tp : Kp → Qp

at primes p|p. Let X/K be smooth, projective, geometrically integral. A
p-adic adelic metric on a line bundle L on X consists of the choice of valu-
ations vL,q at primes q - p and log functions logL,p at primes p|p. We require
that there exist suitable models of X and L so that for all but finitely many
q - p, the valuation vL,p be the associated model valuation. The associated
p-adic height function h : X(K)→ Qp is given by

h(x) =
∑
p|p

tp
(

logL,p(u)
)

+
∑
q-p

vL,q(u)χq(πq).

independently of choice of u ∈ L×x (K).
A line bundle over an abelian variety admits a canonical p-adic adelic

metric. There’s an ensuing interplay between height functions and height
pairings. See §5 of [3]. There is no technical proof here. Instead, the goal
of the talk is to summarize the results up to here and add them all together.
Time permitting, the speaker can include a summary of the application to
quadratic Chabauty from §7 of loc. cit.

2. Talk 3: Vologodsky functions and Besser’s ∂-operator

Let K be a finite extension of Qp, X smooth, geometrically connected
over K. We’ll work (mostly implicitly) with the K-Tannakian category
uVIC(X) of unipotent vector bundles with integrable connection, and we’ll
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make frequent use of the fact that any unipotent connection is analytically
trivial in sufficiently small analytic polydisks. In the presence of a choice
of value for the p-adic logarithm of p, which we fix once and for all, Vol-
ogodsky associates to x, y ∈ X(K) a Tannakian path vx,y : x → y. Here are
some of the properties:

(1) vx,x = Id.
(2) vy,z · vx,y = vx,z.
(3) If x, y are contained in a polydisk in which (E,∇) is analytically

trivial, then vE
x,y : E(x)→ E(y) agrees with parallel transport.

Definition 2.1. Let F be a vector bundle. An abstract BV section of F is a
quadruple

(M,∇, s, v) = (F
s
←− M

∇
−→ Ω1

X ⊗ M, {vx}x)
where M is a unipotent connection, s : M → F is a morphism of O-
modules, and v = {vx}x is a collection of vectors vx ∈ M(x) indexed by
points with values in finite extensions of K such that

vx1,x2(vx1) = vx2 .

We also require an evident compatibility with field extensions. There’s an
evident notion of morphism of abstract BV sections. A BV section is a
connected component of this category; we denote the BV section associated
to (M,∇, s, y) by [M,∇, s, y]. The resulting collection is denoted

FBes(X) = OBes(X,F ).

According to property (4) of Vologodsky paths, if U is a polydisk which
trivializes (M,∇), then there’s a unique horizontal section vU of (M,∇) such
that vx is the value of vU at x for each x ∈ U.

Given f = [M,∇, s : M → F , v = {vx}x] and x ∈ X(K), we define

f (x) := s(vx) ∈ F (x).

Straightforward constructions, including, for instance, maps

FBes(X) × GBes(X)→ (F ⊗ G)Bes(X),

give the sets OBes(X), FBes(X) expected structures (OX-algebra, OBes(X)-
module), and to homomorphisms to spaces of locally analytic sections. For
instance, the homomorphism

O(X)→ OBes(X)

is given by

f 7→ (OX
f
←− OX

d
−→ Ω1

X, 1)
and similarly for

(*) F (X)→ FBes(X).
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We’ll see soon that the map

FBes → Floc.an.(X)

to the space of locally analytic sections is injective, and it follows that (*)
is also injective.

Example 2.2. The simplest examples are the trivial ones, that is, those
Besser sections that are actually algebraic. These may be characterized as

those Besser sections which admit a presentation [F
s
←− E

∇
−→ Ω1⊗E, v] with

(E,∇) trivial. Indeed, under this assumption, the vx assemble to a global
horizontal section vX. This gives rise to a morphism of abstract Besser sec-
tions as follows:

Os(v)
vv

v
��

// Ω1

v
��

F

Es

hh

// Ω1 ⊗ E.
Nontrivial examples arise from integration. In order to make sense of inte-
gration, we first need to define differentiation.

Suppose now that F too is endowed with a connection. Recall that if
s : M → F ⊗Ωi

X is a map of O-modules, then

(∇(s) : M → F ⊗Ωi+1
X ) ∈ Hom(M,F ⊗Ωi+1

X ) ' Hom(M,F ) ⊗Ωi+1
X

is given by
∇(s)(m) := ∇(sm) − s(∇m)

(suitably interpreted).

Definition 2.3. Let (F ,∇) be an integrable connection and (M,∇, s : M →
Ωi

X ⊗ F , v) a BV-section of Ωi
X ⊗ F . We define

∇(M,∇, s : M → F ⊗Ωi
X, v) := [M,∇,∇s : M → F ⊗Ωi+1

X , v].

This gives rise to a complex

OBes(X,F )→ Ω1
Bes(X,F )→ Ω2

Bes(X,F )→ · · ·

called the BV complex of (F ,∇).

Lemma 2.4. If f ∈ OBes(X) is a BV function and θ denotes passage to
associated locally analytic sections, then

θ(∇ f ) = d(θ f ).

Proof. Write f = [M,∇, s : M → O, v]. Fix U a sufficiently small analytic
polydisk so that M|U is trivial. Then θ f |U is the unique analytic function
with values (θ f )(x) = s(vx) and d(θ f ) is given by applying the usual d.
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Turning to the left hand side of the equation, we have that θ(∇ f )|U is the
unique analytic 1-form with values

θ(∇ f )(x) = (∇s)(vx).

The (algebraic, global) map of OX-modules

∇s : M → Ω1
X

has the property that if vU extends vx to an analytic horizontal section over
U, then

(∇s)(vx) =
(
(∇s)(vU)

)
(x) =

(
d(svU) − s(∇vU)

)
(x) =

(
d(svU)

)
(x)

which is the same as d(θ f ) as described above. �

Proposition 2.5. For any polydisk U ⊂ X, the map

FBes(X)→ Floc.an.(U)

is injective.

Sketch. Let f = [M,∇, s : M → F , v = {vx}x] such that s(vx) = 0 for all
x ∈ U. After possibly shrinking U, we may assume (M,∇) is trivial over U.
We then have a unique analytic horizontal section vU ∈ Man(U) such that
s(vU) = 0 in Fan(U). There’s a maximal subconnection (Ms,∇) ⊂ (M,∇)
contained in the kernel of s:

Ms ⊂ ker(s) ⊂ M.

Moreover, any (analytic) horizontal section of M contained in ker(s) is con-
tained in Ms. In particular, vU ⊂ Ms(U). Applying the Tannakian Vologod-
sky paths to (Ms,∇), we find that vx ∈ Ms(x) for all x ∈ X (and in particular
vx is in the kernel of s even outside of U). We then get a hat (or span) of
abstract Coleman functions as shown in the following diagram:

M

~~

// Ω1 ⊗ M

F Ms
oo //

OO

��

Ω1 ⊗ Ms

OO

��

0

``

// Ω1 ⊗ 0.
�

Theorem 2.6. The sequence

0→ K → OBes(X)→ Ω1
Bes(X)→ Ω2

Bes(X)

is exact.
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Sketch. Suppose f ∈ OBes(X) has zero differential. Then so does the asso-
ciated locally analytic function, which is consequently equal to a constant
c. Subtracting c and applying Proposition 2.5, we find that f may be repre-
sented by the abstract BV function (O, d, c : O → O, 1), which is how the
inclusion K → OBes(X) is defined.

Now suppose given (Ω1 ω
←− E

∇
−→ Ω1 ⊗ E, {vx}x) ∈ Ω1

Bes(X) such that

(dω)(vx) = 0 for all x ∈ X.

Consider the connection on E ⊕ OX defined by

∇(e, f ) = (∇e, d f − ωe).

There’s a maximal integrable subconnection E′ ⊂ E with the property that
E contains all analytic horizontal sections. Fix U a polydisk which trivial-
izes (E,∇). Then we have

0 = (dω)(vU) = d(ωvU).

So there’s a locally analytic function g on U solving

ωvU = dg.

We set wU = (vU , g) and we define wx for x ∈ X by transporting wU along
Vologodsky paths. Finally, we claim that

∇
(
OX

π2
←− E′

∇
−→ Ω1 ⊗ E′, {wx}x

)
≡ (Ω1 ω

←− E
∇
−→ Ω1 ⊗ E, {vx}x)

as witnessed by the morphism of abstract BV 1-forms

E′
∇π2

~~

π1

��

∇ // Ω1 ⊗ E′

��

Ω1 Eωoo
∇

// Ω1 ⊗ E.

�

Example 2.7. We may now give a nontrivial example of a BV-function. Let
X = Gm. We define log to be the primitive of dz

z whose value at 1 is 0. (In
particular, we retrieve the value log(p) which we fixed at the outset.) If we
repeat the construction from the proof in this special case, we find that log
may be represented by the abstract BV function

log = [O
π1
←− O2 ∇

−→ (Ω1)2, (1, l)]

where
∇(e, f ) = (de, d f − e

dz
z

)
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and the family of local analytic functions l solves the differential equation

dl =
dz
z
.

Definition 2.8. We let F1(X) be the set of BV-sections f of F such that

f admits a representation f = [F
s
←− E

∇
−→ Ω1 ⊗ E, v] in which (E,∇) is

unipotent of level 2, i.e. fits in a short exact sequence

0→ E1 → E → E2 → 0

with E1, E2 trivial. We say that f ∈ FBes(X) has length 1 if f ∈ F1(X).

Lemma 2.9. Assume X affine. Then any f ∈ F1(X) may be decomposed as
a sum

f =
∑

(
∫

ωi) fi

with fi ∈ F (X) and ωi ∈ Ω1(X).

Sketch. Fix f = (F
s
←− E

∇
−→ Ω1 ⊗ E, v) ∈ F1(X). We decompose into pieces

in several ways and show that each piece is either of the form g ∈ F (X) or
of the form

∫
η for some η ∈ Ω1(X).

Unipotent vector bundles on affine schemes are trivial. In particular E '
On and we may write

s =
∑

i

giri

with gi ∈ Hom(E,O) and ri ∈ F (X). Let

Gi = (O
gi
←− E

∇
−→ Ω1 ⊗ E, v).

We’ve assumed that E sits in a short exact sequence of connections

0 // E1
// E

π2 //

π1

��

E2
// 0

with E1, E2 trivial. After fixing a splitting π1 on the level of underlying
vector bundles as shown, we may write

gi = s1π1 + s2π2

with si ∈ Hom(Ei,O). Since π2 is horizontal, we have

[O
s2
←− E2

π2
←− E

∇
−→ Ω1 ⊗ E, v] ≡ [O

s2
←− E2

∇
−→ Ω1 ⊗ E2, π2(v)]

which belongs to O(X). On the other hand, after possibly multiplying by
an algebraic function, we may assume that s1 is horizontal. In this case,
∇(s1π1) vanishes on E1 and therefore equals ω2π2 for some

ω2 : E2 → Ω1.
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Consequently,

d[O
s1
←− E1

π1
←− E

∇
−→ Ω1 ⊗ E, v] = [Ω1 ω2

←−− E2
∇
−→ Ω1 ⊗ E2, π2(v)] = η

and the latter belongs to Ω1(X). Thus,

[O
s1
←− E1

π1
←− E

∇
−→ Ω1 ⊗ E, v] =

∫
η

is an antiderivative of the holomorphic 1-form η. �

Definition 2.10. Let f = [F
s
←− E

∇
−→ Ω1 ⊗ E, v] ∈ F1(X) be a BV-section of

length 1, and let
0→ E1 → E → E2 → 0

be a short exact sequence of connections. The image of the v assemble to a
global horizontal section v2 of E2; pullback along v2 gives us an extension

E′ = (0→ E1 → E′ → O → 0).

We transport the restriction s1 of s to E1 along the isomorphism

Hom(E1,F ) ' Hom(O,F ) ⊗ Hom∇(E1,O)

and then use the map

Hom∇(E1,O)→ Ext1
∇(O,O)

induced by the extension class of E′ to obtain an element

∂ f ∈ Ext1
∇(O,O) ⊗ Hom(O,F ) = H1

dR(X) ⊗ F (X).

Besser uses a notion of minimal representative to show that this is well
defined and gives rise to a homomorphism

∂ : F1(X)→ H1
dR(X) ⊗ F (X).

Actually, Besser recommends replacing ∂ by −∂.

Example 2.11. Suppose X affine, F ∈ O1(X), f ∈ F (X). Consider the
abstract BV-section (O2, v, s) given by

F
f ·π2
←−−− O2

0 −dF
0 0


−−−−−−−−−→ (Ω1)2, v = (1, F).

Thus
[O2, v, s] ≡ F f ∈ F1(X).

Applying our construction of ∂ we find that

∂(F f ) = [dF] ⊗ f .
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Theorem 2.12. There is a short exact sequence

0→ F (X)→ F1(X)
∂
−→ H1

dR(X) ⊗ F (X).

If X is affine, then ∂ is surjective.

Sketch. Besser uses a notion of “minimal representatives” to show that FBes,
F1 are Zariski sheaves. The statement can then be reduced to the case that
X is affine. The surjectivity then follows from the construction of example
2.12.

Suppose f ∈ ker ∂. Using Lemma 2.9, write

f =
∑

fi

∫
ηi

with fi ∈ F (X) and ηi ∈ Ω1(X). By example 2.11,

0 = ∂ f =
∑

fi ⊗ [ηi].

We can arrange things so that the fi are linearly independent over K, so that
[ηi] = 0 and hence

∫
ηi ∈ O(X). Thus, f ∈ F (X). �

3. Talk 7: Global p-adic heights and quadratic Chabauty

3.1. Valuations and log functions. We’ll work over K = Q; this will allow
us to skip a few technicalities while nevertheless preserving the main ideas.
We let X be a smooth, projective, geometrically integral Q-scheme. Let L
be a line bundle. A valuation on LQp

is a function

vL : L×(Qp)→ Qp

such that
vL(λu) = ordp(λ) + vL(u)

for all u ∈ L×(Qp) and all λ ∈ Q
∗

p.
When X is an abelian variety, by theorem 9.5.7 of [5], after choosing a

rigidification r ∈ L×(K), there’s a canonical valuation on LQp
at every finite

place p of K. These satisfy a list of desiderata which I do not reproduce here.
Especially important is that vL is Q-valued and vL(r) = 0. See Proposition
2.9 of [3].

We recall that a log function on LKp is a Besser-Vologodsky function
logL ∈ OBes(L×Kp) such that

d logL ∈ Ω1(L×Kp), and logL(λu) = log(λ) + logL(u)

for any u ∈ L×(Kp) and any λ ∈ Kp. We say that α ∈ Ω1(XKp) ⊗ H1
dR(XKp) is

a curvature form for LKp if

∪α = c1(LKp).
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We’ll say that a curvature form α for LKp and a log function logL are asso-
ciated if

π∗α = ∂d logL

where π denotes the map L → X. A log function uniquely determines an
associated curvature form. In the opposite direction, every curvature form
has an associated log function, and determines the associated log function
up to the integral of a holomorphic form.

Valuations and log functions on line bundles induce valuations and log
functions on tensor products.

3.2. The height function associated to a p-adic adelic metric. A p-adic
adelic metric on L consists of the following data. For every place p|p, a log
function logL,p on LKp . For every finite place q - p, aQ-valued valuation vL,q

on LKq . These are required to satisfy the following compatibility condition:
There exist integral models X, L over OK such that at all but finitely many
places q - p, the valuation vL,q should be the associated “model valuation”
given by naive intersection with the 0-section.

We make use now of our assumption that actually K = Q. There exists a
continuous homomorphism

χ =
∑

: A∗Q/Q
∗ → Qp

with the following properties. We denote by χq the composition of χ with
the evident map

Q∗q → A
∗
Q/Q

∗.

We require that for q , p, χq(Z∗q) = 0 and that

χp = logp : Q∗p → Qp

be a branch of the p-adic logarithm. We can further arrange for the branch
of the logarithm to be given by logp(p) = 0.

Since we’ll often consider base change to Kq and rarely (or never) con-
sider base-change to its residue field, we’ll allow ourselves to write ‘Xq’ as
an abbreviation for XKq .

The p-adic height function

X(Q)→ Qp

is given by
h(x) = logL,p(u) +

∑
q,p

vL,q(u)χq(q).

for any u ∈ L(x) \ {0}.
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3.3. Log functions on abelian varieties. We now set X = A an abelian
variety over K. Everything will take place over the local field Kp at a p-adic
place p. A log function on a rigidified line bundle (L, r) is normalized if
logL(r) = 0. For L symmetric, a log function is good if the isomorphism

("19") s∗L ⊗ d∗L ' (π∗1L)⊗2 ⊗ (π∗2L)⊗2

is an isometry, i.e. compatible with induced log functions. For L antisym-
metric, a log function is good if the isomorphism

("20") s∗L ' π∗1L ⊗ π∗2L

is an isometry.
We say α ∈ Ω1(A × Â) ⊗ H1

dR(A × Â) is purely mixed if it’s contained in
the summand

Ω1(A) ⊗ H1
dR(Â) ⊕ Ω1(Â) ⊗ H1

dR(A) ⊂ Ω1(A × Â) ⊗ H1
dR(A × Â).

Let P→ A × Â be the Poincaré bundle. We fix arbitrarily a rigidification
rP of P over the origin (0, 0). This choice induces a trivialization

P{0A}×Â ' A
1
Â.

In turn, for any â ∈ Â, the trivialization induces a trivialization of the fiber
of PA×{â} above 0 ∈ A, and hence an associated rigidification râ of PA×{â}.

There is a unique log function logP on P with curvature form α which
restricts to the trivial log function on A × {0} and on {0} × Â. Any rigidified
antisymmetric line bundle is uniquely isomorphic to a unique rigidified fiber

(L, r) ' (PA×{â}, râ).

We define the canonical log function on L to be the one induced form logP.
If L→ A is a line bundle, we have the associated polarization

φL : A→ Â

given on points by φL(a) = t∗aL ⊗ L−1. If L is symmetric then there’s an
isomorphism

(id × φL)∗P ' L⊗2.

In this case, there’s a unique good log function with curvature 1
2 (id× φL)∗α.

This defines the canonical log function for L symmetric.
For an arbitrary line bundle, setting

L+ = L ⊗ [−1]∗L, L− = L ⊗ ([−1]∗L)−1

we have a decomposition

("30") L⊗2 ' L+ ⊗ L−
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into symmetric and antisymmetric parts. We define the canonical log func-
tion logL⊗2 by

logL⊗2(s ⊗ t) = logL+(s) + logL−(t)
and on logL by

logL(s) =
1
2

logL⊗2(s⊗2).

3.4. Heights on abelian varieties. Fix A/Q an abelian variety and L a line
bundle.

Proposition 3.5. The height function associated to the canonical adelic
metric on L is quadratic.

Proof. We address first the case that L is symmetric. In this case, isomor-
phism 19 preserves adelic metrics, and we therefore have an equality of
associated height functions

hs∗L⊗d∗L = hπ∗1L⊗2⊗π∗2L⊗2 .

Fix (x, y) ∈ A × A(K). Then

(s∗L ⊗ d∗L)(x, y) = (s∗L)(x, y) ⊗ (d∗L)(x, y)
= L(s(x, y)) ⊗ L(d(x, y))
= L(x + y) ⊗ L(x − y).

We may therefore choose a vector of the form v ⊗ u with v ∈ L(x + y) and
u ∈ L(x − y) and compute

hs∗L⊗d∗L(x, y) = logs∗L⊗d∗L,p(v ⊗ u) +
∑
q,p

vs∗L⊗d∗L,q(v ⊗ u)χq(q)

= logL,p(v) + logL,p(u) +
∑
q,p

[
vL,q(v) + vL,q(u)

]
χq(q)

= hL(x + y) + hL(x − y).

A similar calculation shows that

hπ∗1L⊗2⊗π∗2L⊗2(x, y) = 2h(x) + 2h(y).

Together, we have

hL(x + y) + hL(x − y) = 2hL(x) + 2hL(y).

We also have hL(0) = 0. Together, via elementary manipulations, these
imply that hL is a homogeneous quadratic form in this case. See e.g. p. 98
of Lang’s Fundamentals.

Similar logic using equation 20 in place of 19 shows that the height func-
tion associated to an antisymmetric line bundle is linear. For a general
line bundle we have that equation 30 is an isometry, which shows that the
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associated height function is a linear combination of linear and quadratic
parts. �

3.6. Quadratic Chabauty. We now assume X/Q is a curve (still smooth
and projective) of genus g ≥ 2. We assume X(Q) contains a point b. We fix
an arbitrary prime p not assumed to be of good reduction (but we do impose
a condition on p below). We fix a purely mixed curvature form on Pp, the
base change to Qp of the Poincaré bundle of the Jacobian J. We denote the
embedding

X → J
associated to b by ι. We restrict attention to the case rk J(Q) = g.

We assume there exists a line bundle L on J which maps to a nonzero
element of the Néron-Severi group such that ι∗L ' A1

X, and we fix such an
isomorphism, which we think of also as a map of total spaces

A1
X

ι̃ //

��

L

��

X
ι
//

1

AA

J.

We denote the canonical section by ‘1’, as shown, and we denote the image
of x ∈ X by 1x. The section 1 and the trivialization ι̃ together provide us
with an associated rigidification rb ∈ L(ι̃(1b)).

For q , p, we define
λL,q : X(Qq)→ Q

by
λL,q(x) = vL,q(ι̃1x).

Then λq takes on only finitely many values, and is identically 0 if X has
potentially good reduction at q (properties of canonical valuations, see e.g.
[5]). Hence, the sets

ΛL,q =
{
λL,q(x)

∣∣∣ x ∈ X(Qq)
}
⊂ Q

and
ΛL =

{∑
q,p

lqχq(q)
∣∣∣ lq ∈ ΛL,q

}
⊂ Qp

are finite.
By compatibility of coherent cohomology with flat base change, we have

H0(J,Ω1) ⊗ Qp ' H0(JQp ,Ω
1).

The map
J(Q) ⊗ Qp → J(Qp) ⊗ Qp

is, by our assumptions, a map of vector spaces of same dimension r = g.
We assume it’s an isomorphism. (If it isn’t, then linear Chabauty applies.)
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The pairing
H0(JQp ,Ω

1) × J(Qp)→ Qp

(ω, x) 7→
∫ x

0
ω

induces an isomorphism

H0(JQp ,Ω
1) ' (J(Qp) ⊗ Qp)∨.

(Facts concerning the p-adic logarithm map of an abelian variety well known
to some. This implicitly includes the statement that the single integrals as
defined in previous lectures predate Vologodsky by many years.)

Combining the above, we have an isomorphism

H0(J,Ω1) ⊗ Qp ' (J(Q) ⊗ Qp)∨.

Via this isomorphism, a basis ω1, . . . , ωg of the Q-vector space H0(J,Ω1)
gives rise to a basis f1, . . . , fg of (J(Q)⊗Qp)∨ where each fi may be identified
with the Vologodsky function

fi(x) =

∫ x

0
ωi

on J(Qp).
Let (ĥL)Qp be the unique quadratic extension of the canonical height to

J(Q)⊗Qp. Then there are uniquely determined p-adic numbers ai j, bk ∈ Qp

such that
(ĥL)Qp =

∑
ai j fi f j +

∑
bk fk.

The local terms of the canonical height ĥL(x) for x ∈ J(Q) depend on the
auxiliary choice of a vector u ∈ L(x). If x ∈ X(Q) ⊂ J(Q), we may choose

u = 1x.

As a matter of notation, let’s identify X, A1
X with their images under ι, ι̃. We

then find that for x ∈ X(Q),

ĥL(x) = logL,p(1x) +
∑
q,p

λL,q(x)χq(q).

Finally, we let
F : X(Qp)→ Qp

be the Besser-Vologodsky function given by

F(x) =
∑

ai j fi(x) f j(x) +
∑

bk fk(x) − logL,p(1x)

and we define

X(Qp)L
Quadratic =

{
x ∈ X(Qp)

∣∣∣ F(x) ∈ ΛL
}
.
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By construction, we have

X(Q) ⊂ X(Qp)L
Quadratic.

4. Exercises

(1) How much does X(Qp)L
Quadratic depend on L? Why does L need to

have nontrivial Néron-Severi class? Note that there’s no choice of
L in Chabauty-Kim theory.

(2) Speaking of Chabauty-Kim theory, find a finite type quotient U of
the unipotent fundamental group such that (at least for p of good
reduction)

X(Qp)U = X(Qp)L
Quadratic.

(3) This is just as much a question about real heights as it is about p-adic
heights. Intuitively, the local terms of the height function associated
to an adelic metric on a line bundle are given roughly by a naive
intersection multiplicity of the given vector (regarded as a 1-cycle
in a Zp-model) against the zero-section. This is precise for the val-
uations at primes of good reduction, imprecise but also not too far
from the truth for valuations at primes of bad reduction (true up to a
constant on each component of the special fiber, at least for a good
choice of model), and merely a naive and possibly faulty intuition
at p.

Meanwhile, the global canonical height ĥL(x) of a point x ∈ A(Q)
for A an abelian variety and L a line bundle, is supposed to be given
by an intersection multiplicity

(*) 〈x, t∗xD − D〉

of x regarded as a 1-cycle against a divisor associated to φL(x) (both
living in the Néron model) at least up to some linear factor. The
appearance of x on both sides accounts for the quadraticity.

Make these statements precise, if they can be made precise. Ex-
plain intuitively why the sum of the local intersection multiplicities
gives rise to (*).

(4) How do you think intuitively about an intersection multiplicity that’s
necessarily and irrevocably R-valued or Qp-valued?

(5) How can the same space be compactified near different points (i.e.
near different primes)?

(6) Related to the previous question. Intuition for the real component
of real heights is said to come from potential theory in physics. Ex-
plain this. What’s the p-adic analog of potential theory?
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